рос | укр
Головна сторінка
Випадкова сторінка
КАТЕГОРІЇ:
АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія
|
Українське художнє килимарство і ткацтво.
Дата добавления: 2015-08-31; просмотров: 812
Обозначения:
V — объем; Sполн — площадь полной поверхности; Sбок — площадь боковой поверхности; Sо — площадь основания; Pо — периметр основания; Pо — периметр перпендикулярного сечения; l — длина ребра; h — высота.
Формула Эйлера
N − L + F = 2
N — число вершин, L — число ребер, F — число граней выпуклого многогранника.
|
| Призма — многранник, две грани которого — равные многоугольники, расположенные в параллельных плоскостях, а остальные — параллелограммы.
|
|
| Параллелепипед — призма, основание которой — параллелограмм. Параллелепипед имеет шесть граней и все они — параллелограммы.
|
|
| Пирамида — многранник, у которого одна грань n-угольник — основание пирамиды, а остальные боковые грани — треугольники с общей вершиной — вершиной пирамиды.
где k — апофема
|
|
| Если в пирамиде провести сечение параллельное основанию, то тело, ограниченное этим сечением, основанием, и заключенной между ними боковой поверхностью пирамиды, называетсяусеченной пирамидой.
где S1 и S2 — площади оснований
где α — двугранный угол при ребре нижнего основания.
|
|
| Правильные многогранники
Многогранник называется правильным, если все его грани — равные правильные многоугольники, а все многогранные углы имеют одинаковое число граней. Все ребра правильного многогранника — равные отрезки, все плоские углы правильного многогранника также равны. Существует пять различных правильных многогранников (выпуклых): правильный четырехгранник (правильный тетраэдр), правильный шестигранник (куб), правильный восьмигранник (правильный октаэдр), правильный двенадцатигранник (правильный додекаэдр), правильный двадцатигранник (правильный икосаэдр).
Обозначения: а — длина ребра; V — объем; Sбок — площадь боковой поверхности; Sполн — площадь полной поверхности; R — радиус описанной сферы; r — радиус вписанной сферы; h — высота.
|
| Тетраэдр — четыре грани — равносторонние равные треугольники. Тетраэдр имеет четыре вершины и шесть ребер
|
|
|
|
| Куб — шесть граней — равные квадраты. Куб имеет восемь вершин и двенадцать ребер.
|
|
| Октаэдр — восемь граней — равносторонние равные треугольники. Октаэдр имеет шесть вершин и двенадцать ребер
|
|
| Додекаэдр — двенадцать граней — правильные равные пятиугольники. Додекаэдр имеет двадцать вершин и тридцать ребер.
|
|
| Икосаэдр — двадцать граней — равносторонние равные треугольники. Икосаэдр имеет двенадцать вершин и тридцать ребер.
|
|
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | <== 31 ==> | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | |