Студопедия — Частотный критерий устойчивости Михайлова
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотный критерий устойчивости Михайлова






Частотный критерий устойчивости Михайлова основан на построении годографа A (jw)

Представляя его в виде суммы вещественной и мнимой составляющих, имеем

Задаваясь значением начиная с точки =0, вычисляем и откладываем значения и . Совокупность этих точек, соединенная плавной кривой, образует годограф Михайлова (рис.).

Критерий устойчивости Михайлова формулируется следующим образом: система автоматического управления устойчива, если годограф Михайлова, начинаясь при w =0 на вещественной положительной полуоси, последовательно обходит n квадрантов координатной плоскости против часовой стрелки, где n - порядок системы.

 

 
 

Пример

Построим годограф Михайлова для системы с передаточной функцией

.

Производится замена оператора Лапласа s на комплексную переменную j× w и группируются слагаемые по степеням w.

Составляющие вектора A (jw)= X (w)+ j × Y (w) имеют вид

Найти частоты, соответствующие пересечениям годографа с осями координат. Для этого необходимо найти решения отдельных уравнений:

Результаты расчета приведены в таблице ниже.

Таблица

Частота w Значения вещественной части характеристического многочлена X (w) Значения мнимой части характеристического многочлена Y (w)
  1, 0  
0, 4   0, 29
0, 6 -0, 86  
2, 42   -25
2, 79    

 

Из таблицы следует, что годограф последовательно обходит пять квадрантов, поэтому исследуемая система устойчива.

Рис. Годограф Михайлова

Построение весовой функции w (t) тоже свидетельствует об устойчивости исследуемой системы, весовая функция w (t) стремится к 0.

 

Рис. График весовой функции w (t)







Дата добавления: 2014-12-06; просмотров: 1425. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия