Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛИНЕЙНЫЕ ПРОСТРАНСТВА





Введем математические объекты: S - множество векторов: х, y, z....; К - множество скаляров: l, m, e..;

Линейное пространство S над полем К определяется как система:

Р = (S, К; j, h),

где j: S ´ S ® S- внутренний закон композиции (аддитивный), S образует абелеву группу, т.е. коммутативную, ассоциативную, с нейтральным (нулевым) и обратным (-х) элемен­тами;

h: K ´ S ® S - внешний закон композиции со свойствами:

а) дистрибутивности относительно внутреннего закона сло­жения векторов: l(х + у) = lx + ly;

б) дистрибутивности относительно аддитивного закона поля К (сложения скаляров): (l + m)x = lx + mх,

в) ассоциативности относительно мультипликативного за­кона поля К: (lm)x = (lx)m;

г) наличие нейтрального элемента (e) относительно умно­жения в поле К: ex = x.

Линейные пространства S над полем К могут быть действи­тельными или комплексными, если К соответственно поле дейст­вительных или комплексных чисел.

Примеры

1. 3-мерные векторы х(х1; х2; х3) образуют действительное линейное пространство j: х + у = z; h: lx.

2. Если S = К, то любое поле К можно рассматривать как векторное пространство над самим собой: j: (+); h: (*).

3. S = {а, b, c}; j: S ´ S ® S; j º (+).

j a b c
a b c a
b c a b
c a b c

Здесь С - нейтральный элемент. Структура типа " абелева группа".

Постройте граф отношения для заданного j.

4. S = {а, b, с), К = {1, 2, 3} - имеем поле вычетов по модулю .

Поле вычетов можно задать в виде таблиц отношений:

* a b c (+)       (*)      
  c c c                
  a b c                
  b a c                
K ´ S ® S K ´ K ® K







Дата добавления: 2014-12-06; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия