Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛИНЕЙНЫЕ ПРОСТРАНСТВА





Введем математические объекты: S - множество векторов: х, y, z....; К - множество скаляров: l, m, e..;

Линейное пространство S над полем К определяется как система:

Р = (S, К; j, h),

где j: S ´ S ® S- внутренний закон композиции (аддитивный), S образует абелеву группу, т.е. коммутативную, ассоциативную, с нейтральным (нулевым) и обратным (-х) элемен­тами;

h: K ´ S ® S - внешний закон композиции со свойствами:

а) дистрибутивности относительно внутреннего закона сло­жения векторов: l(х + у) = lx + ly;

б) дистрибутивности относительно аддитивного закона поля К (сложения скаляров): (l + m)x = lx + mх,

в) ассоциативности относительно мультипликативного за­кона поля К: (lm)x = (lx)m;

г) наличие нейтрального элемента (e) относительно умно­жения в поле К: ex = x.

Линейные пространства S над полем К могут быть действи­тельными или комплексными, если К соответственно поле дейст­вительных или комплексных чисел.

Примеры

1. 3-мерные векторы х(х1; х2; х3) образуют действительное линейное пространство j: х + у = z; h: lx.

2. Если S = К, то любое поле К можно рассматривать как векторное пространство над самим собой: j: (+); h: (*).

3. S = {а, b, c}; j: S ´ S ® S; j º (+).

j a b c
a b c a
b c a b
c a b c

Здесь С - нейтральный элемент. Структура типа " абелева группа".

Постройте граф отношения для заданного j.

4. S = {а, b, с), К = {1, 2, 3} - имеем поле вычетов по модулю .

Поле вычетов можно задать в виде таблиц отношений:

* a b c (+)       (*)      
  c c c                
  a b c                
  b a c                
K ´ S ® S K ´ K ® K







Дата добавления: 2014-12-06; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия