Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА МЕРЫ НЕЧЕТКОСТИ





Мера нечеткости была предложена как функция для решения общей задачи

H: P ® [0, ¥ ],

где H - шенноновская энтропия,

P – множество всех распределений вероятностей, которые могут быть определены на конечных множествах альтернативных (взаимно-исключающих) выходах:

P = 0 для детерминированного случая;

иначе P ® ¥; подобно множеству точек отрезка [0, 1], любая из которых может быть принята за разделительную для выделения отрезка Pi.

P1 P2 Pi Pn

       
 
 
 
   
 


[0; 1]

Сравнение по нечеткости множеств альтернатив разбиения универсума [0, 1] на части целого {[Pi]} определяется в общем виде функцией H:

.

Это единственная известная функция, удовлетворяющая системе из пяти аксиом:

К(a) = (a1; a2; a3; a4; a5)H,

где

a1H - симметричность: нечеткость инвариантна отно­сительно перестановки вероятностей;

a2H - расширяемость: нечеткость не меняется при до­бавлении к рассматриваемому множеству выходов с нулевой веро­ятностью;

a3H - квазиаддитивность: нечеткость совместного рас­пределения вероятностей не более суммы нечеткостей соответст­вующих безусловных распределений его компонентов;

a4H - аддитивность: для распределения вероятностей любых 2-х независимых множеств выходов нечеткость совмест­ного распределения вероятностей равна сумме нечеткостей от­дельных распределений вероятностей;

a5H - непрерывность: нечеткость это непрерывная функция на всех своих аргументах.

Функция f(х) определяет нечеткость (в частности, веро­ятность) для конечного множества альтернатив х Î X.

Коэффициенты " a" и " b" в H являются конституэнтами: значение " а" используется на практике в качестве нормирую­щего коэффициента, значение " b" (основание логарифма) опреде­ляет единицу измерения при передаче информации (бит... дит...).

Нормализующее свойство меры нечеткости иллюстри­руется нечеткостью 2-х равновероятных исходов, когда H = 1.

Чтобы нормализовать для произвольного множества исходов при наихудшем равновероятном случае альтернатив значение H нормируют по величине

| ld | X | |, где | X | - мощность (число) альтернатив;

Значения нормы сведены в таблицу.

 

| X |                    
ld | X |     1.58   2.32 2.58 2.8   3.16 3.32

Упражнения

1. Система имеет два взаимоисключающих выхода на множестве альтернатив {0; 1}. Определить норму.

2. Повторить для X = {3, 4, 5}.

3. Определить энтропию и нормализовать ее для следующих механизмов случайного выбора (МСВ).

 

а.

МСВ X1 X2
МСВ-R1 0.1 0.9
МСВ-R2 0.3 0.7
МСВ-R3 0.5 0.5

 

б.

X          
Pl1 0.6 0.3 0.09 0.01 -
Pl2 0.37 0.37 0.19 0.06 0.01

 

в.

T              
Pm 0.01 0.06 0.24 0.38 0.24 0.06 0.01

 

4. В приложении 5 приведены вероятности появления букв в русском языке, а также один из возможных вариантов МСВ для имитационного моделирования процесса появления букв. “Переведите” на русский язык фрагмент таблицы случайных чисел (см. П.4), предварительно группируя числа в виде четырехзначных последовательностей.

5. Определите нечеткость преобразования последовательности символов “Основы теории систем “, используя данные приложения 6.

6. В приложении 6 приведена топология пишущей машинки с разметкой по частоте отдельных символов (см.П5).

а. Определите систему двухбуквенных сочетаний, используя отношение соседства на клавиатуре.

б. Оцените соответствие найденных соседств фонетическому строю русских слов. Приведите конкретные примеры в подтверждение типовых буквосочетаний и оцените удобство их печатания в данной топологии расположения символов: при печатании одним пальцем и при многопальцевой системе.

7. В приложении 7 приведена топология клавиатуры персо­нального компьютера (ПК). Определите системы соответствий между топологиями пишущей машинки и ПК. Какое лингвистическое и программно-математическое обеспечение потребуется для решения подобной задачи?

5. ДИНАМИЧЕСКИЙ УРОВЕНЬ ОПИСАНИЯ СИСТЕМ У7

Время и пространство неразрывны, как единая форма бы­тия.

Время - это форма последовательности смены явлений и состояний материи, оно характеризует длительности их бытия. Время - это измерение длительности процессов. Своеобразная то­пологическая мера со свойством однонаправленности. С поняти­ем времени связаны понятия прошлое, настоящее, будущее, свя­зана динамика процессов гибели и восстановления, адаптации, эволюции и т.д.

По свойствам время и пространство имеют общие черты: неотделимость от материи, неразрывность от движения, количест­венная и качественная бесконечность.

Универсальные свойства времени: длительность, неповторяемость, необратимость.

Системы измерения времени базируются на системах отсче­та: суточное, годовое, звездное, солнечное, местное, всемирное (по Гринвичу), поясное (декретное), эфемеридное.

Эфемеридное время - равномерно текущее время: эфемеридная секунда равна (31.556.925, 9747)-1 доля тропического года по данным за 1900 год, январь 0, в 12 часов.

В науке на теоретико-множественном уровне абстрагирова­ния время определяется как однонаправленное множество T с элементами tÎ T, с дискретно-задаваемым или непрерывным от­счетом по шкале чисел N. Точки начала и конца отсчета времени определяются наблюдателем.

Системы, описание которых базируется на множестве Т, определяются как динамические системы, в отличие от статиче­ских, т.е. не меняющих свои состояния в зависимости от времени.







Дата добавления: 2014-12-06; просмотров: 644. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия