Студопедия — Вычислительные возможности центральных процессоров общего назначения и графических процессоров
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычислительные возможности центральных процессоров общего назначения и графических процессоров






Со времени своего появления в начале 1980-х годов персональные компьютеры (ПК) развивались в основном как машины для выполнения «кибернетических» программ - сложных по структуре, обрабатывающих большое количество условий, интенсивно взаимодействующих с пользователем (интерактивных), но обычно не связанных с потоковой обработкой большого количества данных. Центральные процессоры ПК (CPU) оптимизировались для решения именно таких задач, так что характеризовались:

· Большим количеством транзисторов для управления ветвлениями программы и сравнительно малым количеством транзисторов для вычислений;

· Архитектурой, оптимизированной для программ со сложным потоком управления (т.е., с обработкой разнородных команд и данных, максимальная интерактивность);

· Памятью, оптимизированной под минимальную латентность.

В начале своей истории ПК не были достаточно мощными для быстрой обработки больших массивов данных, так что CPU вообще не поддерживали поточно-параллельных вычислений. Затем эти процессоры стали суперскалярными – в них была реализована возможность одновременного применения некоторых математических операций к нескольким числам (расширения SSE, 3DNow!). Тем не менее, поддержка поточно-параллельных вычислений центральными процессорами ПК и сейчас сильно ограничена.

Вместе с тем, возможность проведения эффективных поточно-параллельных вычислений на ПК существует, она была реализована для обработки изображения и звука. Поскольку центральные процессоры ПК не оптимизированы для решения таких задач, стали развиваться звуковые карты и видеокарты, снабжённые собственными потоковыми процессорами и собственной памятью, оптимизированной под максимальную пропускную способность.

Рис. 4.4. Архитектура ПК с одним центральным процессором и видеокартой

На рис. 4.4 для иллюстрации показана архитектура персонального компьютера с одним центральным процессором и видеокартой с графичес­ким процессором [13]. Видеокарта – это подсистема ПК, включаю­щая в себя графический процессор (GPU) и специализированную оператив­ную память, с которой этот графический процессор может обмениваться данными. Эту спе­циальную память называют видеопамятью. Центральный процессор также имеет доступ к видеопамяти, а кроме того – может загружать в GPU програм­мы для исполнения и запустить исполнение этих программ. Схематичная мо­дель взаимодействия центрального и графичес­кого процес­соров с памятью (а посредством памяти – и между собой) показана на рис. 4.5.

Рис. 4.5. Взаимодействие центрального и графического процессоров с памятью

Графические процессоры (GPU), используемые в видеокартах, ориентиро­вались на следующие характеристики:

· Память оптимизирована под максимальную пропускную способность;

· Большая часть транзисторов – вычислители;

· Латентность скрывается вычислениями во время запросов к памяти (за счет потоковой обработки);

· Управляющие блоки разделяются между вычислителями (обработка ветвлений менее эффективна);

· Архитектура оптимизирована для программ с большим объемом вычислений (максимальная скорость вычислений).

Современные графические процессоры допускают достаточно слож­ное программирование (см., например, [13]), так что могут быть использова­ны не только для отображения графики, но и для других расчётов. Задачи, хорошо распараллеливаемые по данным, на них можно решать во много раз быстрее, чем на центральных процессорах ПК.







Дата добавления: 2014-12-06; просмотров: 625. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия