Тема : Двухкомпонентные системы, элементы строения и правила работы с диаграммами состояния двухкомпонентных систем различных типов
1. Двухкомпонентные системы, элементы строения. 2. Краткая характеристика элементов строения двухкомпонентных систем. 3. Правила работы с диаграммами состояния двухкомпонентных систем различных типов.
К основным элементам строения двухкомпонентных (бинарных) диаграмм состояния относятся: координатные оси, вертикали составов, изотермы, точки составов химических соединений, кривые ликвидуса и солидуса, точки эвтектики и перитектики, эвтектоидные точки, изотермы полиморфных превращений, бинодальные кривые. На рис.22. изображена общая (буквенная) диаграмма состояния двухкомпонентной системы, на которой показаны практически все основные элементы строения двухкомпонентных диаграмм. Все поле диаграммы разделяется этими элементами строения на ряд областей, соответствующих равновесному существованию определенных фаз (обозначение этих фаз обычно пишется в соответствующей области диаграммы).
Рис. 22. Основные элементы строения диаграммы состояния двухкомпонентной системы
Координатные оси. Двухкомпонентные диаграммы состояния строятся в координатах температура (ось ординат)—концентрация (содержание) компонентов (ось абсцисс). Параметр давление (упругость пара) для двухкомпонентных силикатных систем принимается за постоянную величину, т. е. правило фаз Гиббса при работе с ними используется в виде F=K+1-Р. Цифры на оси абсцисс (см. рис. 22) указывают содержание какого-либо одного компонента (например, В на рис.22) чаще всего в % (мас.) (содержание другого компонента находится по разности: %А= = 100—%В). Точки А и В в начале и конце оси абсцисс соответствуют 100%-ному содержанию компонента, обозначение которого стоит в этой точке. Вертикали составов. Изотермы. Вертикалью состава называется перпендикуляр, опущенный из любой точки диаграммы на ось концентраций или восстановленный к ней из какой либо точки этой оси (например, вертикали ab, d —А2В2, а1в1, m —А3В3 и т. д.). Всем точкам этого перпендикуляра соответствует один и тот же состав с одинаковым содержанием компонентов. Изотермами на двухкомпонентных диаграммах состояния являются прямые, проведенные параллельно оси концентраций (например, прямые, соответствующие точкам te1, te2, t p, tqи т. д. на оси температур). Точки составов химических соединений. Составы бинарных химических соединений обозначаются точками на оси концентраций (например, точки A1B1 A2B2 и т. д. на рис.22), соответствующими содержанию компонентов в этих соединениях. Каждому химическому соединению соответствует своя вертикаль состава (например, вертикали А2В2— d, A3B3— т и т. д.). В зависимости от характера процесса, происходящего при нагревании соединений и возникающих при этом фазах, различают три типа химических соединений: плавящиеся без разложения (конгруэнтно), плавящиеся с разложением (инконгруэнтно) и разлагающиеся (или образующиеся) при изменении температуры в твердом состоянии. Плавление без разложения означает, что при плавлении кристаллического соединения определенного состава образуется только жидкость (расплав) того же состава; при плавлении с разложением образуется жидкость и выделяются кристаллы другого соединения, при этом, естественно, составы как жидкости, так и образующегося соединения отличаются от состава исходного плавящегося соединения; к третьему типу соединений относятся соединения, которые еще до образования жидкой фазы разлагаются (или образуются) при изменении температуры в твердом состоянии. Кривые ликвидуса и солидуса. Важнейшим элементом строения двухкомпонентных диаграмм состояния являются кривые ликвидуса (например, кривые tAс1, с3е1, e1d, de2, e2n, nf, fe3, e3tB на рис.22). Точки кривых ликвидуса показывают состав жидкой фазы (расплава), насыщенной при соответствующей температуре (температуре ликвидуса) по отношению к одной твердой кристаллической фазе, т. е. существующей с ней в равновесии (например, на кривой с3е1 в равновесии с жидкой фазой находятся кристаллы соединения А, на кривой fе 3 — кристаллы соединения А4В4 и т. д.). Точки кривых ликвидуса показывают также температуру начала кристаллизации расплава при его охлаждении или температуру конца плавления твердого вещества при его нагревании. Другой важный элемент строения — кривые солидуса, точки которых показывают состав твердой фазы, в частности насыщенного твердого раствора (например, кривая htB на рис. 22), находящейся в равновесии с жидкой фазой (состав которой показывают точки кривой ликвидуса), а также температуру начала плавления твердой фазы при ее нагревании или конца кристаллизации при охлаждении расплава. Солидус может быть представлен также и ломаной линией (например, fge3, htB на рис.22). Поскольку вдоль кривых ликвидуса и солидуса в равновесии находятся две фазы — жидкая и одна твердая, по правилу фаз все точки этих кривых (кроме тройных точек и точек, отвечающих составам индивидуальных химических соединений) выражают моновариантное состояние системы (f=К+l—Р=2 + 1—2=1). Однофазная область жидкой фазы над кривыми ликвидуса является дивариантной. Точки эвтектики и перитектики. Эвтектоидные точки. Ветви кривых ликвидуса пересекаются в точках, называемых точками эвтектики (например, точки е1 е2, е3 и т. д. на рис. 22), а составы, соответствующие этим точкам, называются эвтектическими. Эвтектический состав строго постоянен для каждой данной частной двухкомпонентной системы (на рис. 22) частными по отношению ко всей системе А—В являются системы А—А2В2, А2В2—А4В4, A4B4—В) и расположен между точками составов соединений, образующих эту частную систему. Плавление или кристаллизация любого состава таких систем происходит (начинается и заканчивается) при одной и той же строго постоянной и наинизшей (по сравнению со всеми другими составами этой частной системы) температуре, называемой эвтектической температурой (например, температуры tе1, tе2, на рис.22). В точках эвтектики в равновесии находятся три фазы: одна жидкая и две твердые (например, в точке эвтектики е2 — жидкая фаза состава этой точки и твердые фазы А2В2 и А3Вз), поэтому в соответствии с правилом фаз точки эвтектики выражают инвариантное состояние системы (f=К+1—Р = 2+1—3=0). Это означает, что система из характеризуемой точкой эвтектики состояния не может перейти в другое состояние (т. е. не может изменить свои параметры — температуру и концентрацию), пока не исчезнет хотя бы одна фаза. Следует отметить, что в точках эвтектики происходит только физический процесс кристаллизации (при охлаждении) или плавления (при нагревании) и кристаллизация в этой точке всегда заканчивается (т. е. жидкая фаза исчезает). Точка (п на рис.22) пересечения кривой ликвидуса (nf) с изотермой (tn) инконгруэнтного плавления химического соединения (АзВз), плавящегося с разложением, называется точкой перитектики, а соответствующая ей температура — перитектической температурой. Подобные точки, так же как и точки эвтектики, выражают инвариантное состояние системы (в точке п в равновесии находятся три фазы: жидкая — состава этой точки — и две твердые — кристаллы соединений А3Вз и А4В4). В отличие от эвтектической точка перитектики является точкой химической реакции и в зависимости от исходного состава кристаллизация в этой точке перитектики может закончиться (жидкая фаза исчезнет) или продолжится дальше (исчезнет одна твердая фаза) до точки эвтектики. Различие между точками эвтектики и перитектики заключается также в том, что первые всегда лежат ниже температур кристаллизации (или плавления) чистых компонентов, а вторые между указанными температурами. Аналогичная точке эвтектики инвариантная точка (е3 на рис.22) в системах с ограниченным рядом твердых растворов называется эвтектоидной точкой, а соответствующая ей температура — эвтектоидной температурой. Изотермы полиморфных превращений. При наличии в двухкомпонентной системе соединений, существующих в нескольких полиморфных модификациях (например, соединение А3Вз на рис. 22 существует в виде полиморфных форм Аз'Вз' и Аз" Вз"), на диаграмме состояния появляется изотерма (klu), разделяющая температурные области стабильного существования этих форм (выше температуры tu соединение А3Вз существует в виде Аз'В3'-, а ниже — в виде А3" В3" -формы). Бинодальные кривые. Если в двухкомпонентной системе имеет место явление ликвации (фазового разделения однородной жидкой фазы на две несмешивающиеся жидкости), то на кривой ликвидуса появляется характерная горбообразная кривая (например, с1, с2, с3 на рис.22), называемая бинодальной кривой, ограничивающая область ликвации. Точки левой и правой ветвей этой кривой (с2с1 и с2с3) характеризуют составы двух жидких фаз, находящихся при данной температуре в равновесии. В области ликвации до начала кристаллизации расплава двухкомпонентная система моноварианта, а после начала кристаллизации — инвариантна. В системах с образованием ограниченного твердого раствора бинодальными кривыми или линиями сольвуса называют также кривые (например, hs на рис.22), характеризующие составы находящихся в равновесии твердых растворов ниже эвтектоидной температуры (tе3). Конноды. Коннодами на диаграммах состояния называются отрезки прямых, соединяющие своими концами точки составов фаз, находящихся в равновесии при данной температуре. На диаграммах двухкомпонентных систем коннодами являются отрезки прямых, параллельных оси концентраций, т. е. конноды совпадают с изотермами (например, коннода с1с3, лежащая своими концами на кривой ликвидуса, показывает, что при соответствующей температуре в равновесии находятся жидкие фазы, составы которых выражаются точками с1 и с2, коннода kl, лежащая своими концами на вертикалях состава соединений А2В2 и А3В3, показывает, что в равновесии находятся фазы, состав которых выражается точками k и l, а именно, соединения А2В2 и А3В3 и т. д.). Правила работы с диаграммами состояния двухкомпонентных систем различных типов . Диаграммы состояния позволяют прежде всего определить для любого состава в данной системе путь кристаллизации и путь плавления. Под условным термином «путь кристаллизации» понимается описываемая на диаграмме последовательность фазовых изменений и изменений составов жидкой и твердой фаз при охлаждении расплава данного состава; под «путем плавления» — таже последовательность, но для твердой смеси, подвергающейся нагреванию вплоть до ее полного расплавления. Следует отметить, что для одного и того же состава графически путь кристаллизации и путь плавления идентичны, но противоположны по направлению и последовательности фазовых превращений. Определение последовательности фазовых изменений на диаграммах состояния основывается на правилах работы с ними. Эти правила удобно рассматривать на отдельных типах двухкомпонентных диаграмм состояния в их общем выражении (тип диаграммы определяется наиболее характерным набором элементов строений этой диаграммы). При графическом построении путей кристаллизации или плавления следует иметь в виду, что при пересечении любого элемента строения на диаграмме происходят определенные фазовые изменения.
|