Семантика традиционной силлогистики
Для начала необходимо выделить и определить некоторый универсум рассуждения U. Истинность категорических атрибутивных высказываний можно определить в традиционной силлогистике через выполнимость для субъектов и предикатов отношений, задаваемых некоторыми модельными схемами. 1. Предложение «Всякий S есть Р» истинно тогда и только тогда, когда классы S и Р находятся в одном из следующих отношений: № 1 № 2
Например, «Всякий квадрат – это равносторонний прямоугольник» находится в отношении, задаваемом первой модельной схемой, и, следовательно, является истинным. «Всякий студент является учащимся» также является истинным, так как субъект и предикат этого высказывания находятся в отношении, задаваемом второй модельной схемой. 2. Предложение «Ни один S не есть Р» истинно тогда и только тогда, когда классы S и Р находятся в одном из следующих отношений: № 1 № 2
Примером истинного предложения, в котором субъект и предикат находятся в отношении, задаваемом первой модельной схемой, может служить предложение «Всякий юридически наказуемый поступок не есть преступление». Вторая модельная схема имеет место для субъекта и предиката предложения «Ни одно натуральное число не является иррациональным», и поэтому оно истинно. 3. Предложение «Некоторый S есть Р» истинно тогда и только тогда, когда S и Р находятся в одном из следующих отношений: № 1 № 2
№ 3 № 4
№ 5
Примерами высказываний, субъекты и предикаты которых соответственно удовлетворяют каждой из данных модельных схем, будут: 1) «Некоторый квадрат есть равносторонний прямоугольник», 2) «Некоторые студенты являются учащимися», 3) «Некоторый учащийся – спортсмен», 4) «Некоторый писатель является поэтом», 5) «Некоторое натуральное число, меньше 100, является натуральным числом, большим 80». 4. Предложение «Некоторый S не есть Р» истинно тогда и только тогда, когда классы S и Р находятся в одном из следующих отношений: № 1 № 2
![]() ![]()
№ 3 № 4
№ 5
№ 5
5. Предложение «а есть Р» истинно тогда и только тогда, когда между предметом, обозначенным термином «а», и классом Р существует отношение, соответствующее схеме №1: Это значит, что предмет а является элементом класса Р. Например: «Д.И.Менделеев – химик», «2 – четное число», «Лондон – город» и т.д. 6. Предложение «а не есть Р» истинно тогда и только тогда, когда между предметом, обозначенным термином «а», и классом Р существует отношение, соответствующее схеме №2: № 1 № 2
Это значит, что предмет а не является элементом класса Р. Например: «5 не является четным числом», «Наполеон не является англичанином» и др.
|