Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Игры, в которых выигрыш одного игрока не равен выигрышу второго





Рассмотрим теперь игры, в которых выигрыш одного игрока во многих случаях не равен выигрышу второго.

Игра 1. «Выбор компьютера».

Двое знакомых одновременно выбирают, компьютеры какого типа им купить. Первый предпочитает IBM. PC, второй — Ма­кинтош. Обладание компьютером любимого типа первый оцени­вает в а (а > 0) некоторых условных единиц, а второй — в b (b > 0) условных единиц. Полезность компьютера другого типа для обо­их равна нулю. Каждый получает дополнительную выгоду (с > 0), если они выберут одинаковые компьютеры, поскольку в таком случае используемое ими программное обеспечение будет совмес­тимым.

В этом примере каждый из игроков (мы будем их называть «Игрок I» и «Игрок 2») имеет две стратегии, которые можно ус­ловно назвать «IBM» и «Мас». Описанную игру удобно предста­вить в виде таблицы (матрицы) 2х2. В игре имеется четыре исхо­да: (IBM, IBM), (IBM, Mac) (Mac, IBM) и (Mac, Mac). Каждому исхо­ду соответствует своя клетка таблицы; в этой клетке помещают­ся соответствующие выигрыши участников.

 

  IBM MAC
  IBM c a+c b a
  MAC   b+c c

 

Игра 2. Пешеход и автомобилист.

В игре участвуют пешеход и автомобилист. Каждый из игроков имеет две стратегии: проявлять осторожность (А) и не проявлять осторожности (В). От выбранных стратегий зависит вероятность дорожно-транспортного происшествия (автомобилист собьет пешехода). Если оба ведут себя неосторожно, то вероятность происшествия равна 1/2, если только один ведет себя неосторожно, то вероятность равна 1/10, а если оба осторожны, то вероятность равна 1/100.

В случае, если произойдет столкновение, то ущерб пешехода составит 1000 у.е., а ущерб автомобилиста — 200 у.е. Кроме того, осторожное поведение на дороге связано для обоих игроков с издержками в 100 у.е.

На примере Игры 2 рассмотрим, каким образом представить в нормальной форме игру, включающую случайность. Для этого нам необходимо задать способ вычисления выигрышей (все остальные элементы нормальной формы здесь уже указаны).

Стандартное предположение теории игр состоит в том, что если выигрыш — случайная величина, то игроки предпочитают действия, которые приносят им наибольший ожидаемый выигрыш. Предполагается, что в описании игры случайные выигрыши даны в таком виде, что можно рассчитать их математическое ожидание и использовать в качестве выигрышей в нормальной форме игры. Таким образом, выигрыши выражены в некоторых условных единицах (вовсе не обязательно денежных) и представляют некоторый абстрактный уровень полезности для игрока при данном сочетании стратегий.

Пусть оба участника игры проявляют осторожность, то есть реализовался исход (А, А). Если произойдет столкновение, то выигрыш пешехода составит (-1100), а выигрыш водителя — (-300). В противном случае выигрыш пешехода составит (-100), а выигрыш водителя — (-100). Ожидаемые выигрыши равны в этом случае:

1/100* (-1100) + 99/100* (-100) = -110 — для пешехода

1/100* (-200)+99/100*(-100)=-102 — для автомобилиста.

 

 

Автомобилист

 
 
Пешеход








Дата добавления: 2014-12-06; просмотров: 1164. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия