Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Игры, в которых выигрыш одного игрока не равен выигрышу второго





Рассмотрим теперь игры, в которых выигрыш одного игрока во многих случаях не равен выигрышу второго.

Игра 1. «Выбор компьютера».

Двое знакомых одновременно выбирают, компьютеры какого типа им купить. Первый предпочитает IBM. PC, второй — Ма­кинтош. Обладание компьютером любимого типа первый оцени­вает в а (а > 0) некоторых условных единиц, а второй — в b (b > 0) условных единиц. Полезность компьютера другого типа для обо­их равна нулю. Каждый получает дополнительную выгоду (с > 0), если они выберут одинаковые компьютеры, поскольку в таком случае используемое ими программное обеспечение будет совмес­тимым.

В этом примере каждый из игроков (мы будем их называть «Игрок I» и «Игрок 2») имеет две стратегии, которые можно ус­ловно назвать «IBM» и «Мас». Описанную игру удобно предста­вить в виде таблицы (матрицы) 2х2. В игре имеется четыре исхо­да: (IBM, IBM), (IBM, Mac) (Mac, IBM) и (Mac, Mac). Каждому исхо­ду соответствует своя клетка таблицы; в этой клетке помещают­ся соответствующие выигрыши участников.

 

  IBM MAC
  IBM c a+c b a
  MAC   b+c c

 

Игра 2. Пешеход и автомобилист.

В игре участвуют пешеход и автомобилист. Каждый из игроков имеет две стратегии: проявлять осторожность (А) и не проявлять осторожности (В). От выбранных стратегий зависит вероятность дорожно-транспортного происшествия (автомобилист собьет пешехода). Если оба ведут себя неосторожно, то вероятность происшествия равна 1/2, если только один ведет себя неосторожно, то вероятность равна 1/10, а если оба осторожны, то вероятность равна 1/100.

В случае, если произойдет столкновение, то ущерб пешехода составит 1000 у.е., а ущерб автомобилиста — 200 у.е. Кроме того, осторожное поведение на дороге связано для обоих игроков с издержками в 100 у.е.

На примере Игры 2 рассмотрим, каким образом представить в нормальной форме игру, включающую случайность. Для этого нам необходимо задать способ вычисления выигрышей (все остальные элементы нормальной формы здесь уже указаны).

Стандартное предположение теории игр состоит в том, что если выигрыш — случайная величина, то игроки предпочитают действия, которые приносят им наибольший ожидаемый выигрыш. Предполагается, что в описании игры случайные выигрыши даны в таком виде, что можно рассчитать их математическое ожидание и использовать в качестве выигрышей в нормальной форме игры. Таким образом, выигрыши выражены в некоторых условных единицах (вовсе не обязательно денежных) и представляют некоторый абстрактный уровень полезности для игрока при данном сочетании стратегий.

Пусть оба участника игры проявляют осторожность, то есть реализовался исход (А, А). Если произойдет столкновение, то выигрыш пешехода составит (-1100), а выигрыш водителя — (-300). В противном случае выигрыш пешехода составит (-100), а выигрыш водителя — (-100). Ожидаемые выигрыши равны в этом случае:

1/100* (-1100) + 99/100* (-100) = -110 — для пешехода

1/100* (-200)+99/100*(-100)=-102 — для автомобилиста.

 

 

Автомобилист

 
 
Пешеход








Дата добавления: 2014-12-06; просмотров: 1164. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия