Свойства решений матричных игр
Обозначим через G (Х, Y, А) игру двух лиц с нулевой суммой, в которой игрок 1 выбирает стратегию х Î Х, игрок 2 – y Î U, после чего игрок 1 получает выигрыш А = А (х, y) за счёт игрока 2. Определение. Стратегия х1 игрока 1 доминирует (строго доминирует) над стратегией х2, если А (х1, y) ³ А (х2, y)(А (х1, y) > А (х2, y)), y Î U. Стратегия y1 игрока 2 доминирует (строго доминирует) над стратегией y2, если А (х, y1) £ А (х, y2)(А (х, y1) < А (х, y2)), х Î Х. При этом стратегии х2 и y2 называются доминируемыми (строго доминируемыми). Спектром смешанной стратегии игрока в конечной антагонистической игре называется множество всех его чистых стратегий, вероятность которых согласно этой стратегии положительна. Свойство 1. Если чистая стратегия одного из игроков содержится в спектре некоторой его оптимальной стратегии, то выигрыш этого игрока в ситуации, образованной данной чистой стратегией и любой оптимальной стратегией другого игрока, равен значению конечной антагонистической игры. Свойство 2. Ни одна строго доминируемая чистая стратегия игрока не содержится в спектре его оптимальной стратегии. Игра G¢ = (Х¢, Y¢, А¢) называется подыгрой игры G (Х, Y, А), если Х¢ Ì Х, U¢ Ì U, а матрица А¢ является подматрицей матрицы А. Матрица А¢ при этом строится следующим образом. В матрице А остаются строки и столбцы, соответствующие стратегиям Х¢ и U¢, а остальные “вычеркиваются”. Всё то что “останется” после этого в матрице А и будет матрицей А¢. Свойство 3. Пусть G = (Х, Y, А) – конечная антагонистическая игра, G¢ = (Х \ х¢, Y, А) – подыгра игры G, а х¢ – чистая стратегия игрока 1 в игре G, доминируемая некоторой стратегией , спектр которой не содержит х¢. Тогда всякое решение (хо, yо, u) игры G¢ является решением игры G. Свойство 4. Пусть G = (Х, Y, А) – конечная антагонистическая игра, G¢ = (Х, Y \ y¢, А) – подыгра игры G, а y¢ – чистая стратегия игрока 2 в игре G, доминируемая некоторой стратегией , спектр которой не содержит y¢. Тогда всякое решение игры G¢ является решением G. Свойство 5. Если для чистой стратегии х¢ игрока 1 выполнены условия свойства 3, а для чистой стратегии y¢ игрока 2 выполнены условия свойства 4, то всякое решение игры G¢ = (Х \ х¢, Y \ y¢, А) является решением игры G = (Х, Y, А). Свойство 6. Тройка (хо, yо, u) является решением игры G = (Х, Y, А) тогда и только тогда, когда (хо, yо, кu +а) является решением игры G (Х, Y, кА+а), где а – любое вещественное число, к > 0. Свойство 7. Для того, чтобы хо = () была оптимальной смешанной стратегией матричной игры с матрицей А и ценой игры u, необходимо и достаточно выполнение следующих неравенств (j = ) Аналогично для игрока 2: чтобы yо = ( ,..., ,..., ) была оптимальной смешанной стратегией игрока 2 необходимо и достаточно выполнение следующих неравенств: (i = ) Из последнего свойства вытекает: чтобы установить, является ли предполагаемые (х, y) и u решением матричной игры, достаточно проверить, удовлетворяют ли они неравенствам (*) и (**). С другой стороны, найдя неотрицательные решения неравенств (*) и (**) совместно со следующими уравнениями , получим решение матричной игры. Таким образом, решение матричной игры сводится к нахождению неотрицательных параметров решений линейных неравенств (*) (**) и линейных уравнений (***). Однако это требует большого объёма вычислений, которое растёт с увеличением числа чистых стратегий игроков. (Например для матрицы 3 3 имеем систему из 6 неравенств и 2 уравнений). Поэтому в первую очередь следует, по возможности используя свойства 2 и 3, уменьшить число чистых стратегий игроков. Затем следует во всех случаях проверить выполнение неравенства = . Если оно выполняется, то игроки имеют чистые оптимальные стратегии (игрок 1 – чистую максиминная, а игрок 2 – чистую минимаксная). В противном случае хотя бы у одного игрока оптимальные стратегии будут смешанные. Для матричных игр небольшого размера эти решения можно найти, применяя свойства 1 – 5. Замечание. Отметим, что исключение доминируемых (не строго) стратегий может привести к потере некоторых решений. Если же исключаются только строго доминируемые стратегии, то множество решений игры не изменится.
Пример 3. Пусть G = (Х, Y, А), где Х = {1, 2, 3, 4}; Y = {1, 2, 3, 4}, а функция выигрыша А задана следующим образом:
где С > 0. Решение. Прежде всего заметим, что по свойству 6 достаточно решить игру G1 = (Х, Y, А), где А1 = А. В матричной форме игра G1 определяется матрицей выигрышей Элементы четвёртой строки этой матрицы “ £ ” соответствующих элементов третьей строки и поэтому третья стратегия игрока 1 доминирует над четвёртой. Кроме того, элементы первого столбца матрицы А1 “ ³ ” соответствующих элементов второго столбца, Следовательно, вторая стратегия игрока 2 доминирует над его первой стратегией. Далее, из свойства 5 следует, что всякое решение игры G2 = (Х \ {4}, Y \ {1}, А1) является решением игры G1. В матричной форме игру G2 можно представить матрицей . Очевидно, что элементы второй строки “ ³ ” полусуммы соответствующих элементов первой и третьей строк. Кроме того, элементы третьего столбца матрицы А2 “ ³ “ соответствующих элементов второго столбца. Применяя свойство 5 получим, что всякое решение игры G3 = (Х \ {4, 2}, Y \ {1, 4}, А2) является решением игры G2, а следовательно и игры G1. Игра G3 определяется матрицей . Матрица А3 не имеет седловой точки, т.к. не выполнено равенство = , а игра G3 не имеет решения в чистых стратегиях, т.е. оптимальные стратегии игроков являются смешанными. Эти стратегии (в данном случае) легко найти из анализа структуры матрицы А3. Поскольку матрица А3 симметрична, можно предположить, что игроки в оптимальной стратегии используют свои чистые стратегии с равными вероятностями. Действительно, если игрок 1 выбирает с равными вероятностями стратегии 1 и 3, то при применении любой из двух чистых стратегий игроком 2 математическое ожидание выигрыша игрока 1 будет равным либо , либо .
Аналогично, если игрок 2 использует свои чистые стратегии 2 и 3 с равными вероятностями, то математическое ожидание его проигрыша будет равно . Следовательно, указанные стратегии являются оптимальными в игре G3, а величины – значением игры G3. Из предыдущего следует, что эти стратегии оптимальны и в G1. Таким образом, стратегия Х = (, 0, , 0) является оптимальной стратегией игрока 1, стратегия Y = (0, , , 0) – оптимальной стратегией игрока 2 в игре G1, а значение игры G1 равно . В силу свойства 4 решением игры G будет тройка (Х, Y, ).
|