Студопедия — ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ






Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность наступления события А равна P(A)=p и, следовательно, вероятность противоположного события (ненаступления А) равна . Определим вероятность Pn(m) того, что событие А произойдет m раз при n испытаниях. При этом заметим, что наступления или ненаступления события А могут чередоваться различным образом. Условимся записывать возможные результаты испытаний в виде комбинаций букв А и . Например, запись означает, что в четырех испытаниях событие осуществилось в 1-м и 4-м случаях и не осуществилось во 2-м и 3-м случаях.

Всякую комбинацию, в которую А входит m раз и входит n-m раз, назовем благоприятной. Количество благоприятных комбинаций равно количеству k способов, которыми можно выбрать m чисел из данных n; таким образом, оно равно числу сочетаний из n элементов по m, т.е.


Подсчитаем вероятности благоприятных комбинаций. Рассмотрим сначала случай, когда событие A происходит в первых m испытаниях и, следовательно, не происходит в остальных n-m испытаниях. Такая благоприятная комбинация имеет следующий вид:


Вероятность этой комбинации в силу независимости испытаний (на основании теоремы умножения вероятностей) составляет

 

Так как в любой другой благоприятной комбинации Вi событие A встречается также m раз, а событие происходит n-m раз, то вероятность каждой из таких комбинаций также равна . Итак


Все благоприятные комбинации являются, очевидно, несовместными. Поэтому (на основании аксиомы сложения вероятностей)


Следовательно,

(13)

 

или, так как , то

 

(13')

 

Формула (13) называется формулой Бернулли *.

 

 

Пример 1. Вероятность попадания в цель при одном выстреле равна 0, 6. Какова вероятность того, что 8 выстрелов дадут 5 попаданий?

Решение: Здесь
n=8;
m=5;
p=0, 6;
q=1-0, 6=0, 4.

Используя формулу (13'), имеем

 

 

Часто необходимо знать, при каком значении m вероятность принимает наибольшее значение, т. е. требуется найти наивероятнейшее число наступления события A в данной серии опытов. Можно доказать, что число должно удовлетворять двойному неравенству

(14)


Заметим, что сегмент [np-q; np+p], в котором лежит , имеет длину (np+p)-(np-q)=p+q=1. Поэтому, если какой-либо из его концов не является целым числом, то между этими концами лежит единственное целое число, и определено однозначно. В том случае, если оба конца — целые числа, имеются два наивероятнейших значения: np-q и np+p.

 

 

Пример 2. Определить наивероятнейшее число попаданий в цель в примере 1.

Решение: Здесь
n=8;
p=0, 6;
q=0, 4;
np-q=8*0, 6-0, 4=4, 4;
np+p=8*0, 6+0, 6=5, 4.

Согласно формуле (14) наивероятнейшее значение лежит на сегменте [4.4; 5.4] и, следовательно равно 5.

 

При больших значениях n подсчет вероятностей Pn(m) по формуле (13) связан с громоздкими вычислениями. В этом случае удобнее пользоваться следующей формулой:

(15)

 

, где (p не равно нулю и единице), a

 

Формула (15) выражает так называемую локальную теорему Лапласа **. Точность этой формулы повышается с возрастанием n.

Функция , как мы увидим в дальнейшем, играет очень большую роль в теории вероятностей. Ее значения при различных значениях аргумента приведены в Приложении (см. табл. I).

 

Пример 3. Игральную кость бросают 80 раз. Определить вероятность того, что цифра 3 появится 20 раз.

Решение: Здесь
m=20;
n=80;
p=1/6;
q=1-1/6=5/6;

далее находим


Используя формулу (15), получим


так как из табл. I находим, что

 

 

* Я. Бернулли (1654-1705) - швейцарский математик.
** П. Лаплас (1749—1827) — французский математик и астроном.

 

 







Дата добавления: 2014-12-06; просмотров: 762. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия