Дискретные случайные величины. Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2,..., xn,.... Пусть задана функция p(x), значение которой в каждой точке x=xi (i=1, 2,...) равно вероятности того, что величина примет значение xi
Пример 1. Случайная величина — число очков, выпадающих при однократном бросании игральной кости. Возможные значения — числа 1, 2, 3, 4, 5 и 6. При этом вероятность того, что примет любое из этих значений, одна и та же и равна 1/6. Какой будет закон распределения? Решение: Таким образом, здесь закон распределения вероятностей есть функция р(х)=1/6 для любого значения х из множества {1, 2, 3, 4, 5, 6}.
Пример 2. Пусть случайная величина - число наступления события A при одном испытании, причем P(A)=p. Множество возможных значений состоит из 2-х чисел 0 и 1: =0, если событие A не произошло, и =1, если событие A произошло. Таким образом,
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить событие A. Пусть вероятность наступления события A при каждом испытании равна p. Рассмотрим случайную величину — число наступлений события A при n независимых испытаниях. Область изменения состоит из всех целых чисел от 0 до n включительно. Закон распределения вероятностей р(m) определяется формулой Бернулли (13'):
Закон распределения вероятностей по формуле Бернулли часто называют биномиальным, так как Pn(m) представляет собой m -й член разложения бинома .
Решение: Здесь . По формуле (17) находим
Распределение Пуассона часто встречается и в других задачах. Так, например, если телефонистка в среднем за один час получает N вызовов, то, как можно показать, вероятность Р(k) того, что в течение одной минуты она получит k вызовов, выражается формулой Пуассона, если положить .
Если возможные значения случайной величины образуют конечную последовательность x1, x2,..., xn, то закон распределения вероятностей случайной величины задают в виде следующей таблицы, в которой и
Эту таблицу называют рядом распределения случайной величины . Наглядно функцию р(х) можно изобразить в виде графика. Для этого возьмем прямоугольную систему координат на плоскости. По горизонтальной оси будем откладывать возможные значения случайной величины , а по вертикальной оси - значения функции . График функции р(х) изображен на рис. 2. Если соединить точки этого графика прямолинейными отрезками, то получится фигура, которая называется многоугольником распределения.
Пример 4. Пусть событие А — появление одного очка при бросании игральной кости; Р(A)=1/6. Рассмотрим случайную величину — число наступлений события А при десяти бросаниях игральной кости. Значения функции р(х) (закона распределения) приведены в следующей таблице:
Вероятности p(xi) вычислены по формуле Бернулли при n=10. Для x> 6 они практически равны нулю. График функции p(x) изображен на рис. 3.
Дальше... * Случайные величины будем обозначать малыми буквами греческого алфавита: ,....
|