Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Типовая задача. Рассчитать ЭДС гальванического элемента состоящего из электродов: а) Zn/ZnSO4 (0,1М) и Ni/NiSO4 (0,01M);





Рассчитать ЭДС гальванического элемента состоящего из электродов: а) Zn/ZnSO4 (0, 1М) и Ni/NiSO4 (0, 01M);

б) Ag/AgNO3 (1M) и Ag/AgNO3 (0, 1M). Составить схемы гальванических элементов, описать процессы, протекающие на катоде и аноде.

 

Решение. а) Рассматриваемый гальванический элемент является химическим, т.е. разница потенциалов достигается за счет разной химической природы электродов. ЭДС гальванического элемента определяется разницей потенциалов катода и анода. Пользуясь значениями таблицы П.2, в приложении находим значения стандартных потенциалов цинкового и никелевого электродов:

φ 0(Zn2+/Zn0) = -0, 76 В

φ 0(Ni2+/Ni0) = - 0, 25 В

Рассчитываем реальные потенциалы рассматриваемых электродов при указанных в условии задачи концентрациях, используя уравнение Нернста:

 

 

, где

 

n – количество электронов, участвующих в электродной полуреакции;

[Zn2+] и [Ni2+] – концентрации катионов цинка и никеля в растворе, составляющем электрод.

Рассчитав потенциалы электродов, составляющих гальванический элемент, можем сделать вывод, что цинковый электрод в данном элементе является анодом, а никелевый – катодом, т.к. φ Ni2+/Ni0 > φ Zn2+/Zn0

 

Записываем уравнения процессов, протекающих на катоде и аноде:

на никелевом электроде будет происходить восстановление

(+) К: Ni2+ + 2е- = Ni0

на цинковом электроде – окисление

(-) А: Zn0 = Zn2++ 2е-

Токообразующая реакция:

Ni2+ + Zn0 = Ni0 + Zn2+

 

Рассчитываем ЭДС:

 

ε = φ к - φ а = φ Ni2+/Ni0 - φ Zn2+/Zn0 = -0, 31 – (-0, 79) = 0, 48 В

 

Составляем схему гальванического элемента:

 

(-) Zn | ZnSO4 (0, 1М) || NiSO4 (0, 01M) | Ni (+)

 

б) Рассматриваемый гальванический элемент является концентрационным, т.е. разница потенциалов достигается за счет разницы концентраций растворов соли в составе электродов.

ЭДС рассчитывается аналогично ЭДС химического гальванического элемента.

Пользуясь таблицей П.2, находим значение стандартного потенциала серебряного электрода:

φ 0Ag+/Ag0 = 0, 80 В

Используя уравнение Нернста, определяем потенциалы электродов при заданных концентрациях. Обозначим потенциал электрода Ag/AgNO3 (1M) – φ 1, а электрода Ag/AgNO3 (0, 1M) – φ 2.

Потенциал φ 1 будет равен стандартному потенциалу серебряного электрода, т.к. [Ag+] = 1 моль/л

φ 1 = 0, 80 В

Для второго электрода потенциал рассчитываем, используя уравнение Нернста:

 

 

Электрод Ag/AgNO3 (1M) в данном элементе является катодом, Ag/AgNO3(0, 1M) –анодом, т.к. φ 1 > φ 2

На первом электроде будет происходить восстановление:

(+) К: Ag+ + е- = Ag0

на втором – окисление:

(-) А: Ag0 = Ag+ + е-

Рассчитываем ЭДС гальванического элемента

 

ε = φ к - φ а = φ 1 - φ 2= 0, 80 - 0, 74 = 0, 06 В

и составляем его схему

 

(-) Ag | AgNO3 (0, 1M) || AgNO3 (1M) | Ag (+)

 

 

Варианты заданий

Таблица 10

№ п/п 1-ая пара электродов 2-ая пара электродов
     
1. Sn | SnCl2 (0, 1M); Cr | CrCl3 (1M) Co | CoSO4 (0, 1M); Co | CoSO4 (0, 01M);
2. Ni | NiSO4 (1M); Co | CoSO4 (0, 01M) Сu | CuCl2 (0, 001M); Сu | CuCl2 (0, 1M);
3. Сu | CuCl2 (0, 1M); Zn | ZnCl2 (1M) Cr | CrCl3 (1M); Cr | CrCl3 (0, 1M)
4. Cr | CrCl3 (0, 01M); Pb | PbCl2 (1M) Fe | FeCl2 (1M); Fe| FeCl2 (0, 1M)
5. Cd | CdSO4 (0, 1M); Bi | Bi2(SO4)3(0, 1M) Au | Au(NO3)3 (0, 1M); Au | Au(NO3)3 (1M);
6. Ag | AgNO3 (0, 1M); Hg | Hg(NO3)2 (1M) Ni | NiCl2 (0, 01M); Ni | NiCl2 (0, 1M);
7. Fe | FeSO4 (0, 1M); Zn | Zn SO4 (0, 01M) Pb | Pb (NO3)2 (0, 1M); Pb | Pb (NO3)2 (1M)
8. Cr | CrCl3 (0, 1M); Fe| FeCl2 (1M) Sn | Sn(NO3)2 (0, 01M); Sn | Sn(NO3)2 (0, 1M)
9. Mg | Mg(NO3)2 (0, 01M); Zn | Zn(NO3)2 (1M) Hg | Hg(NO3)2 (0, 1M); Hg | Hg(NO3)2 (1M)
10. Ni | NiCl2 (0, 1M); Zn | ZnCl2 (0, 1M) Mg | MgCl2 (0, 1M); Mg | MgCl2 (0, 01M)
11. Au | Au(NO3)3 (0, 1M); Zn | Zn(NO3)2 (1M) Ag | AgNO3 (0, 1M); Ag | AgNO3 (0, 01M);
12. Cr | CrCl3 (0, 01M); Zn | ZnCl2 (0, 1M) Cd | CdSO4 (1M); Cd | CdSO4 (0, 1M);
13. Ni | Ni(NO3)2 (1M); Cu | Cu(NO3)2 (0, 1M) Zn | ZnCl2 (0, 1M); Zn | ZnCl2 (0, 001M)
14. Cr | CrCl3 (0, 001M); Ni | NiCl2 (1M) Zn | Zn(NO3)2 (0, 1M); Zn | Zn(NO3)2 (1M)
15. Ag | AgNO3 (0, 1M); Ni | Ni(NO3)2 (0, 01M) Mg | Mg(NO3)2 (1M); Mg | Mg(NO3)2 (0, 1M);
16. Au | Au(NO3)3 (0, 01M); Ag | Ag NO3 (1M) Sn | SnCl2 (0, 001M); Sn | SnCl2 (0, 1M);
17. Ni | NiCl2 (0, 1M); Fe | FeCl2 (1M) Pb | PbCl2 (0, 1M); Pb | PbCl2 (0, 01M)
18. Fe | Fe(NO3)2 (1M); Ag| AgNO3 (0, 01M) Zn | Zn SO4 (0, 01M); Zn | Zn SO4 (0, 1M)
19. Fe | FeCl3 (0, 1M); Co | CoCl2 (1M) Ni | Ni(NO3)2 (1M); Ni | Ni(NO3)2 (0, 1M);
20. Cr | CrCl3 (0, 1M); Fe| FeCl2 (1M) Cu | Cu(NO3)2 (1M); Cu | Cu(NO3)2 (0, 1M)
21. Fe | Fe(NO3)2 (0, 1M); Zn | Zn(NO3)2 (0, 1M) Ni | NiCl2 (0, 1M); Ni | NiCl2 (0, 001M);
22. Cu | CuCl2 (1M); Fe| FeCl2 (0, 01M) Pb | Pb (NO3)2 (0, 01M); Pb | Pb (NO3)2 (1M)
23. Fe | Fe(NO3)2 (0, 01M); Cd| Cd (NO3)2 (1M) Hg | Hg(NO3)2 (0, 1M); Hg | Hg(NO3)2 (1M)
24. Cu | Cu(NO3)2 (0, 1M); Ag | Ag NO3 (1M) Fe | FeCl3 (0, 1M); Fe | FeCl3 (0, 001M);
25. Cu | Cu(NO3)2 (1M); Hg | Hg(NO3)2 (0, 1M) Fe | Fe(NO3)2 (1M); Fe | Fe(NO3)2 (0, 01M);
26. Au | Au(NO3)3 (0, 1M); Cu | Cu(NO3)2 (1M) Fe | FeSO4 (1M); Fe | FeSO4 (0, 001M);
27. Mg | MgCl2 (0, 01M); Fe | FeCl2 (0, 1M) Cd | CdSO4 (0, 01M); Cd | CdSO4 (0, 1M);
28. Pb | PbCl2 (0, 1M); Mg | MgCl2 (0, 01M) Ag | AgNO3 (0, 1M); Ag | AgNO3 (0, 01M);
29. Mg | Mg(NO3)2 (0, 1M); Sn | Sn(NO3)2 (1M) Cr | CrCl3 (0, 001M); Cr | CrCl3 (0, 1M)
30. Ni | Ni(NO3)2 (0, 1M); Pb | Pb (NO3)2 (1M) Co | CoSO4 (0, 01M); Co | CoSO4 (0, 001M);

 







Дата добавления: 2014-10-22; просмотров: 11947. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия