Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание установки и метода измерений. Вращающееся тело в виде стержня неправильной формы закреплено на оси ОО, проходящей через его центр масс (рис





Вращающееся тело в виде стержня неправильной формы закреплено на оси ОО, проходящей через его центр масс (рис. 8.1). Шарик массой m, свободно падающий с высоты h, ударяется о стержень нарасстоянии r от оси вращения. В результате удара стержень начинает вращаться, а шарик либо отскакивает вверх, либо продолжает движение вниз с изменившейся скоростью. Из-за трения в подшипнике спустя некоторое время t тело останавливается, сделав n оборотов.

При ударе систему " шарик – тело" можно считать замкнутой и поэтому для неё можно записать закон сохранения момента импульса.

Перед ударом тело неподвижно, следовательно, момент импульса системы непосредственно перед ударом равен только моменту импульса шарика, который можно считать точкой,

, (8.1)

где радиус-вектор точки, в которой происходит удар, – скорость шарика перед ударом.

После удара момент импульса системы складывается из момента импульса шарика и момента импульса вращающегося тела

, (8.2)

где – скорость шарика после удара, I – момент инерции тела, – начальная скорость вращения, которую тело приобретает в момент удара.

Итак, закон сохранения момента импульса для системы " шарик – тело" имеет вид

.

В последнем выражении все величины направлены по одной прямой, поэтому в скалярной форме оно выглядит так:

. (8.3)

Уравнения (8.3) недостаточно для определения момента инерции тела I. Но если удар считать абсолютно упругим (практически так оно и есть), то для системы " шарик – тело" можно записать закон сохранения механической энергии

, (8.4)

где и – кинетические энергии шарика до и после удара, – кинетическая энергия тела непосредственно после удара.

Исключив из системы уравнений (8.3) и (8.4) скорость шарика после удара (которую практически невозможно найти), получим формулу для расчета момента инерции тела

. (8.5)

Скорости и легко определить на опыте. Если сопротивлением воздуха пренебречь, то для шарика можно записать закон сохранения механической энергии

,

откуда . (8.6)

Начальную угловую скорость тела находят, руководствуясь следующими соображениями. После удара вращение тела является равнозамедленным, следовательно, описывается уравнениями

, (8.7)

где t – время, в течение которого тело останавливается; – угол, на который оно поворачивается за это время, – угловое ускорение вращающегося тела; – угловая скорость тела в момент времени t.

Поскольку = 0, тоиз (8.7) получается

. (8.8)

Угол можно найти, зная число оборотов n, совершенных телом до остановки. Так как поворот на один оборот соответствует повороту на угол 2p радиан, то , и (8.8) принимает вид

. (8.9)

Данные, полученные выше, позволяют, пользуясь основным законом динамики вращательного движения, найти момент силы трения в подшипнике

. (8.10)

Выразив угловое ускорение из (8.7) и подставив его в (8.10), получают окончательную формулу для расчета момента силы трения в подшипнике

. (8.11)







Дата добавления: 2014-10-29; просмотров: 684. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия