Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание установки и метода измерений. На рис. 6.1 показано сечение сферического зеркала MLN плоскостью чертежа





На рис. 6.1 показано сечение сферического зеркала MLN плоскостью чертежа. L – наинизшая точка зеркала. Если шарик поместить в произвольную точку С, а затем отпустить, он будет совершать колебательное движение.

Рис. 6.1

Для нахождения радиуса кривизны зеркала R используют закон сохранения механической энергии. В точке С механическая энергия шарика равна его потенциальной энергии , так как шарик неподвижен, а в точке L механическая энергия шарика равна его кинетической энергии, которая слагается из кинетической энергии поступательного движения и кинетической энергии вращательного движения .

Если пренебречь трением между шариком и поверхностью зеркала, то закон сохранения механической энергии для шарика будет иметь вид

, (6.1)

где – масса шарика, h – высота точки С по отношению к точке L, скорость поступательного движения шарика в точке L, ω – угловая скорость вращательного движения шарика в той же точке, I – момент инерции шарика относительно оси, проходящей через его диаметр.

Учитывая, что момент инерции шарика , и, согласно (Т.5), (где r – радиус шарика), уравнение (6.1) можно преобразовать

. (6.2)

Высоту h, на которую поднимается центр масс шарика при его отклонении от положения равновесия, можно выразить через радиус кривизны поверхности, по которой движется центр масс шарика . Рассмотрим треугольник COD, в котором ОС = , ОD = h, DC = A (отрезок DC можно считать равным амплитуде колебаний шарика А, так как при сравнительно малых отклонениях от положения равновесия хорда и стягиваемая ею дуга практически совпадают). Поскольку треугольник СОD прямоугольный, то для него можно записать теорему Пифагора

.

Если в последнем выражении раскрыть скобки и пренебречь величиной второго порядка малости (каковой является ), то получим, что

. (6.3)

Для нахождения скорости шарика необходимо знать уравнение его движения. Шарик совершает затухающие колебания, но при расчете радиуса кривизны не будет большой ошибкой считать, что он совершает незатухающие колебания, так как при малых коэффициентах затухания периоды затухающих и незатухающих колебаний различаются незначи-тельно. Итак, будем считать, что шарик совершает гармоническое колеба-тельное движение, описываемое уравнением

, (6.4)

где x – смещение шарика от положения равновесия в момент времени t,
A – амплитуда колебаний шарика, ω циклическая (или круговая) частота колебаний, связанная с периодом колебаний T соотношением:

. (6.5)

Взяв первую производную от смещения (6.4) по времени, получим скорость шарика как функцию времени

. (6.6)

Из (6.6) следует, что максимальное значение скорость имеет при
sinw t = 1, т. е. в точке L скорость шарика равна

. (6.7)

Подставив (6.7) и (6.3) в (6.2), получим формулу для расчёта радиуса кривизны поверхности, по которой движется центр масс шарика

. (6.8)

Как видно из (6.8), для расчета необходимо знать только период колебаний шарика, который легко найти, измерив время t, за которое шарик совершает n колебаний: .

Из рис. 6.1 видно, что радиус кривизны поверхности зеркала R равен

. (6.9)







Дата добавления: 2014-10-29; просмотров: 712. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия