Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. При решении многих задач в механике закон сохранения энергии применяют совместно с законом сохранения импульса





При решении многих задач в механике закон сохранения энергии применяют совместно с законом сохранения импульса. Классическим примером применения обоих законов сохранения является задача о столкновении тел. Взаимодействие между телами, в этом случае, происходит в течение короткого промежутка времени. При таких кратковременных взаимодействиях возникающие внутренние силы настолько велики, что значительно превосходят внешние, и поэтому соударяющиеся тела можно считать замкнутой механической системой.

Сталкивающимися телами могут быть и бильярдные шары, и молекулы, и элементарные частицы, т.к. законы сохранения импульса и энергии справедливы не только в классической, но и в квантовой физике. Столкновениями объясняется механизм многих явлений. Такие процессы, как теплопроводность газов, диффузия, способность газов оказывать сопротивление движущимся в них телам, определяются столкновениями молекул друг с другом. Химические реакции в веществах, находящихся в газообразном состоянии, происходят также вследствие столкновения молекул. Рассеянием электронов на неоднородностях кристаллической решетки, объясняется свойство электрической проводимости тел.

Различаются два вида столкновений. Упругими называются столкновения, при которых выполняются законы сохранения энергии и импульса, а при неупругих столкновениях выполняется только закон сохранения импульса. Механическая энергия при неупругих столкновениях частично преобразуется в другие виды энергии, например, тепловую.

Рис. 2.1.

Рассмотрим процесс столкновения двух стальных шаров, подвешенных на нитях одинаковой длины .

Если отклонить шар массой m1 на угол a0 и отпустить, то он, ударившись упруго о неподвижный шар массой m2, передаст ему часть своей энергии и импульса (рис.2.1).

После удара шары отклоняются на углы a1 и a2, а их центры масс при этом поднимутся на высоты h1 и h2 по отношению к линии удара, т.е. кинетические энергии шаров, приобретенные ими после удара, перейдут в потенциальные. Запишем закон сохранения импульса данной системы относительно оси Х (при условии, что ):

(2.1)

где υ 1 – проекция скорости первого шара на ось X до удара; u1 и u2 – проекции скоростей первого и второго шаров на эту же ось после удара.

Закон сохранения механической энергии для первого шара после его столкновения со вторым можно записать следующим образом:

(2.2)

При малых углах отклонения маятников ():

sina @ a (рад). (2.3)

Тогда из (2.2) и (2.3) следует, что:

, (2.4)

Аналогично можно получить значение скорости второго шара после столкновения с первым:

. (2.5)

Из уравнения (2.1) можно выразить u2:

. (2.6)

Скорость первого шара до удара υ 1 можно определить подобным (2.4), (2.5) образом:

. (2.7)

Подставив (2.4), (2.5), (2.7) в уравнение (2.6), получим:

. (2.8)

В этом выражении a0, a1 и a2 могут записываться как в радианах, так и в градусах.

Закон сохранения импульса (2.1) определяет линейную зависимость между скоростями υ 1, u1 и u2, а так как эти скорости в данных условиях пропорциональны углам (a0, a1, a2) – то и линейную зависимость между углами a0, a1, a2. Поэтому, если экспериментальная зависимость a2 от (a0 - a1) окажется линейной (с учетом погрешности), то это будет свидетельствовать о выполнении закона сохранения импульса при столкновении шаров.

Реальные материалы (металлы, полимеры и т.п.) не являются абсолютно упругими телами. Поэтому при столкновении двух стальных шаров закон сохранения механической энергии не выполняется, а именно: часть механической энергии переходит во внутреннюю энергию деформируемых тел, что вызывает их нагревание.

В этом случае закон сохранения энергии будет иметь вид:

, (2.9)

где – кинетическая энергия первого шара до и после удара, – кинетическая энергия второго шара, Q – часть механической энергии, которая переходит во внутреннюю энергию этих шаров после столкновения.

Преобразуем уравнение (2.9):

. (2.10)

Используя (2.1) получим, что:

. (2.11)

Обозначим величину через К, тогда – коэффициент восстановления скорости, который характеризует меру упругости тел при взаимодействии. При абсолютно упругом столкновении Q =0 и, следовательно, К =1.

Из уравнений (2.4) – (2.6) и (2.11) получим:

, (2.12)

т.е. если закон сохранения импульса выполняется и в том случае, когда имеются потери механической энергии (неупругие столкновения), то в пределах погрешности измерений зависимость (a2-a1) от a0 должна быть линейной, а тангенс угла наклона графика определять значение коэффициента К.

Величина называется коэффициентом потери механической энергии при столкновении шаров.

Выполнив преобразование выражения (2.11) с учетом (2.5) и (2.7), получим:

. (2.13)

На основании экспериментальных данных в силу линейной зависимости a2 от a0 (2.13) можно найти коэффициент потери механической энергии d, определяя тангенс угла наклона графика
и используя значение К из (2.12).

Сила взаимодействия при столкновении, согласно второму закону Ньютона, определяется изменением импульса каждого шара и временем соударения t: где – сила, действующая со стороны второго шара на первый; – сила, действующая со стороны первого шара на второй; – изменение импульса первого шара; – изменение импульса второго шара. Учитывая (2.4) – (2.6), получаем (для проекции векторов на ось Х):

, .

Средняя сила взаимодействия при столкновении шаров определяется следующим образом:

. (2.14)

Рис. 2.2

Рассмотрим частный случай неупругого столкновения, а именно: полностью неупругое столкновение, после которого скорости обоих соударяющихся тел оказываются одинаковыми. Это возможно, если при деформации тел возникают силы, зависящие не от величины деформации, а от скорости изменения деформации.

Показать случай полностью неупругого столкновения можно при помощи шаров из пластилина, подвешенных на нитях длиной (рис.2.2).

Если отклонить шар массой m1 на угол a0 и отпустить, то после столкновения оба шара «слипаются» и дальше движутся вместе как одно целое с одинаковой скоростью. Из аддитивности масс следует, что масса тела, образовавшегося в результате «слипания» шаров, равна сумме их масс. Тогда закон сохранения импульса можно записать в виде:

, (2.15)

где υ 1 – проекция скорости первого шара до соударения на ось Х; u12 – проекция скорости первого и второго шаров после соударения на ось Х.

При малых углах отклонения первого шара аналогично соотношениям (2.4) и (2.7) скорости υ 1 и u12 определяются следующим образом:

, .

Тогда (2.15) можно записать в виде:

. (2.16)

В этом выражении a0 и a могут быть представлены, как в радианах, так и в градусах. Таким образом, если график зависимости a от a0 в пределах погрешности измерений будет прямой, то это свидетельствует о выполнении закона сохранения импульса и при полностью неупругом столкновении тел.

В случае подобных столкновений, как видно из (2.11) при u1=u2=u12, величина потерь механической энергии будет максимальной (К =0): , а коэффициент потери механической энергии зависит только от соотношения масс сталкивающихся тел:

. (2.17)







Дата добавления: 2014-10-29; просмотров: 756. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия