Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. Рассмотрим один из случаев плоского движения твердого тела, а именно: качение цилиндра по вогнутой цилиндрической поверхности





Рассмотрим один из случаев плоского движения твердого тела, а именно: качение цилиндра по вогнутой цилиндрической поверхности.

Плоским называется такое движение, при котором тело одновременно участвует в поступательном и вращательном движениях, например, качение цилиндра.

Пусть – радиус цилиндрической поверхности, – масса цилиндра, – его радиус (рис. 3.1). Если цилиндр вывести из состояния равновесия, то его ось будет совершать гармонические колебания по закону:

, (3.1)

где максимальное угловое отклонение оси цилиндра от вертикали, – период колебаний. Угловая скорость движения относительно оси цилиндрической поверхности находится с помощью дифференцирования выражения для угла отклонения по времени:

, (3.2)

где – амплитуда или максимальное значение угловой скорости этого движения. Катящийся без проскальзывания цилиндр вращается также относительно своей собственной геометрической оси. Максимальную угловую скорость этого движения можно представить в виде:

, (3.3)

Будем рассматривать полную кинетическую энергию цилиндра как сумму кинетической энергии движения относительно оси цилиндрической поверхности и кинетической энергии движения относительно собственной оси. При прохождении положения равновесия:

, (3.4)

, (3.5)

где –момент инерции цилиндра относительно оси цилиндрической поверхности, – момент инерции относительно собственной оси цилиндра. При написании соотношения (3.4) была использована теорема Штейнера, согласно которой: .

В процессе движения цилиндра периодически происходит превращение кинетической энергии в потенциальную и обратно. Максимальное значение потенциальной энергии будет равно (см. рис. 3.1):

. (3.6)

Будем полагать, что цилиндр совершает малые колебания около положения равновесия. Тогда и, следовательно:

. (3.7)

По закону сохранения механической энергии:

. (3.8)

Подставим полученные ранее выражения для кинетической энер-гии (3.4), (3.5) и потенциальной (3.7) в соотношение (3.8):

. (3.9)

Отсюда можно найти период колебаний:

. (3.10)

Кроме того, соотношение (3.9)можно использовать для определения момента инерции цилиндра , измерив экспериментально период колебаний на данной вогнутой цилиндрической поверхности:

. (3.11)







Дата добавления: 2014-10-29; просмотров: 586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия