Методы исследования и виды движения жидкости
Кинематика жидкости и газа имеет существенные отличия от кинематики твердого тела. Частицы твердого тела жестко связаны между собой. В движущейся жидкости (газе) такие связи отсутствуют, частицы движутся не только вместе с потоком, но и относительно друг друга. Существует два аналитических способа исследования движения жидкости: метод Лагранжа и метод Эйлера. Метод Лагранжа позволяет исследовать кинематику движения частицы жидкости в пространстве относительно начальных координат x0, y0, z0 в момент времени t0. Текущие координаты x, y, z движущейся частицы определяются относительно начальных координат. Зная текущие координаты в различные моменты времени можно построить траекторию движения частицы, а поток жидкости представить совокупностью траекторий частиц за определенный промежуток времени. Этот метод из-за сложности в механике жидкости и газа применяется достаточно редко. Метод Эйлера изучает определенную область пространства, в которой находится движущаяся жидкость. В этой области выбираются неподвижные точки, в которых определяются скорость и давление в определенные моменты времени. Этот метод позволяет определить поля скоростей и давлений в определенный момент времени и используется чаще всего в настоящее время. Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным). Установившимся называется движение жидкости, при котором скорость и давление в любой неподвижной точке пространства, занятого жидкостью, не изменяются во времени, т.е.
p=f1(x, y, z); u=f2(x, y, z).
В частном случае установившееся движение может быть равномерным, когда поле скоростей не меняется вдоль потока жидкости (газа). Примером установившегося движения является движения теплоносителя в системе отопления при неизменных регулировках, движение жидкости в напорном трубопроводе центробежного насоса при постоянной частоте вращения, в реках при отсутствии паводков и проливных дождей. Частным случаем установившегося движения является равномерное течение жидкости – когда поперечное сечение и средняя скорость не меняются по длине потока. Неустановившимся называется движение жидкости, когда давление и (или) скорость изменяются во времени в любой неподвижной точке рассматриваемого пространства с движущейся жидкостью. При этом имеют место следующие зависимости:
p=f3(x, y, z, t); u=f4(x, y, z, t). В качестве примеров неустановившегося движения можно привести: движение жидкости во всасывающем трубопроводе поршневого насоса, движение воды в реке во время половодья. В дальнейшем рассмотрим установившееся движение жидкости и некоторые частные случаи неустановившегося движения. Кроме того, различают напорное и безнапорное движение жидкости. Напорное движение – движение жидкости, происходящее за счет перепада напоров (чаще всего из-за перепада давления) при отсутствии свободной поверхности. Примером напорного течения является движение воды в водопроводной сети жилого дома, масла в гидроприводе строительной машины. Когда поток имеет свободную поверхность, то такое движение жидкости называется безнапорным. Оно происходит за счет перепада высот. Безнапорным является движение воды в реках, каналах. Основные понятия струйчатой модели потока жидкости При установившемся движении жидкости траектории частиц не изменяются во времени. Траектории различных частиц жидкости, проходящих через данную точку пространства при неустановившемся движении, различны. Поэтому для изучения характеристик потока в данный момент времени введено понятие линии тока.
Если в движущейся жидкости взять замкнутый контур, ограничивающий поверхность бесконечно малых площадок dS, и через все его точки провести линии тока, то получим трубчатую поверхность, называемую трубкой тока (рис. 4.2). Часть потока жидкости, заключенного внутри трубки тока, называется элементарной струйкой.
|