Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения Эйлера движения идеальной жидкости





 

В потоке идеальной жидкости расположим декартовы оси координат произвольным образом. Так же, как и при рассмотрении равновесия покоящейся жидкости (см. п. 3.3), выделим в первом квадранте элементарный объем в виде параллелепипеда с ребрами dx, dy и dz, параллельными соответствующим осям координат (рис. 5.1). Предположим, что жидкость в нем затвердела. Тогда на грани параллелепипеда действуют силы давления dF1…6 от окружающей жидкости, а в его центре масс (точка О) приложена сила тяжести dG. Параллелепипед движется со скоростью u. Составим уравнение движения данного параллелепипеда, используя принцип Д ' Аламбера. Уравнение движения параллелепипеда, спроектированное на ось Х, имеет вид:

 

, (5.1)

 

где m – масса параллелепипеда: m = ρ dx dy dz; аХ – проекция ускорения параллелепипеда на ось Х: аx = dux/dt.

Проведя рассуждения, аналогичные подразделу 3.3, получим:

 

, а .

 

Равнодействующая массовой силы dG равна:

 

dGx=ρ dx dy dz j,

 

где j – ускорение, вызванное силой dG.

Тогда проекция dG на ось Х будет иметь вид: dGх=ρ dx dy dz jх.

Подставим соответствующие значения проекций сил в уравнение (5.1) и разделим на ρ dx dy dz. В результате получим:

 

 

Проведя аналогичные рассуждения для осей Y и Z, получим дифференциальные уравнения движения жидкости:

(5.2)

 

Система уравнений (5.2) называется системой дифференциальных уравнений Эйлера движения идеальной жидкости. Эти уравнения справедливы как для несжимаемой, так и для сжимаемой жидкости. При выводе уравнений (5.2) не накладывались условия стационарности движения, значит они справедливы и для неустановившегося движения.

Для удобства практического использования вместо системы уравнений (5.2) получим одно эквивалентное уравнение. Для этого умножим первое уравнение системы (5.2) на dx=ux dt, втрое – на dy=uy dt, третье – на dz=uz dt и сложим эти уравнения. В результате получим:

 

. (5.3)

 

Трехчлен, находящийся в скобках, является полным дифференциалом давления dp (см. 3.3). Кроме того, ux dx= d(u2x/2), uy dy= d(u2y/2), uz dz= d(u2z/2), а d(u2x/2)+ d(u2y/2)+ d(u2z/2)= d(u2/2). С учетом этого уравнение (5.3) примет вид:

(5.4)

 

Уравнение (5.4) называют дифференциальным уравнением Эйлера движения идеальной жидкости.







Дата добавления: 2014-10-29; просмотров: 1822. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия