Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Истечение жидкости через малое отверстие при постоянном напоре




Отверстие называется малым, когда его вертикальный размер меньше 0,1 расчетного напора Нр (понятие об Нр приведено ниже): для круглого отверстия dо<0,1Нр (рис. 6.1) При таком условии можно считать, что давление и скорость жидкости во всех точках сечения малого отверстия одинаковы. Отверстие может быть выполнено в виде сверления в тонкой стенке (δ<0,67 Нр) без обработки входной кромки или в толстой стенке, но с заостренными краями кромки с внешней стороны (рис. 6.2). Условия истечения жидкости в этих случаях будут одинаковы. Частицы жидкости приближаются к отверстию из всего объема, двигаясь ускоренно по плавным траекториям. Например, частицы жидкости, двигающиеся у вертикальной стенки к отверстию, должны повернуть на угол 900 при выходе наружу. Поскольку частицы жидкости обладают массой и, соответственно, свойством инерционности, то они огибают входную кромку по некоторой кривой. Поэтому, на расстоянии l=(0,5…1,0)do образуется так называемое сжатие струи, т.е. площадь сечения струи Sс меньше площади отверстия So. Степень сжатия струи оценивается коэффициентом сжатия струи εо:

(6.1)

 

При истечении жидкости необходимо знать скорость и расход. Для этого составим уравнение Бернулли для сечений 1-1 и 2-2, приняв за плоскость сравнения горизонтальную плоскость, проходящую через ось отверстия:

(6.2)

 

где ζо – коэффициент сопротивления малого отверстия. Обозначим α2=α, u2=u, а р2вых (рвых– давление на выходе из малого отверстия). Введем расчетный напор Нр:

 

Тогда из уравнения (6.2) получим:

 

(6.3)

 

Окончательно, из уравнения (6.3) найдем скорость истечения струи:

 

(6.4)

 

где φокоэффициент скорости малого отверстия:

 

(6.5)

 

Для гипотетического случая истечения идеальной жидкости ζо=0, а α=1. Тогда φо=1, а скорость истечения идеальной жидкости будет равна:

 

(6.6)

 

Формула (6.6) совпадает с формулой для расчета свободного падения тела в пустоте и называется формулой Торричелли. Анализ формул (6.4) и (6.6) показывает, что коэффициент скорости φо – это отношение скорости истечения вязкой жидкости к скорости истечения идеальной жидкости:

 

(6.7)

 

Коэффициент скорости φо всегда меньше единицы, поскольку скорость истечения идеальной жидкости uи больше скорости истечения вязкой жидкости u из-за наличия гидравлического сопротивления: всегда ζо>0.

Поле скоростей в сечении струи является равномерным только в ядре струи, наружный слой жидкости имеет несколько меньшую скорость из-за трения об острую входную кромку малого отверстия. Скорость в ядре струи, как показывают опыты, практически равна идеальной uи. Поэтому коэффициент φо является коэффициентом средней скорости.

Расход жидкости Q при истечении подсчитывают как произведение скорости струи на площадь ее сечения:

 

(6.8)

 

Произведение коэффициентов εо и φо называется коэффициентом расхода µо:

 

(6.9)

 

Тогда формулу (6.8) для расчета расхода Q можно записать в следующем виде:

(6.10)

 

Коэффициенты сжатия струи εо, сопротивления ζо, скорости φо и расхода µо зависят от числа Рейнольдса Re. Поскольку для расчета Re необходимо знать скорость истечения u, а для определения скорости u необходим коэффициент скорости φо, то принято использовать в расчетах число Рейнольдса, подсчитанное для идеальной скорости uи:

 

(6.11)

 

Графические зависимости, составленные А.Д. Альтшулем на основе опытов различных авторов, приведены на рис. 6.3.

 

 

 







Дата добавления: 2014-10-29; просмотров: 2265. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.003 сек.) русская версия | украинская версия