Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расход, средняя скорость. Уравнение расхода (неразрывности)




 

Расход – количество жидкости, проходящее через живое сечение потока (элементарной струйки) в единицу времени.

Данное количество жидкости можно измерять в единицах объема, массы и веса. Поэтому различают объемный Q, массовый Qm и весовой QG расходы.

Для элементарной струйки, имеющей бесконечно малые площади живых сечений dS можно считать скорость u одинаковой во всех точек каждого сечения (см. рис. 4.2). Тогда для элементарной струйки объемный dQ, массовый dQm и весовой расходы dQG с учетом уравнений (2.1) и (2.2) будут равны:

 

 

Объемный расход потока жидкости можно определить как сумму расходов элементарных струек:

 

(4.3)

В инженерных расчетах воспользоваться уравнением (4.3) достаточно сложно, поэтому введено понятие средней скорости.

Средняя скорость потока – фиктивная скорость, с которой якобы движутся все частицы жидкости в данном живом сечении потока, но расход при этом равен расходу, вычисленному по действительным скоростям элементарных струек. Тогда

 

(4.4)

 

Исходя из закона сохранения вещества, сплошности (неразрывности) течения и непроницаемости трубки тока можно утверждать, что при установившемся течении несжимаемой жидкости во всех живых сечениях элементарной струйки расход постоянен (см. рис. 4.2):

 

(4.5)

 

Уравнение (4.5) называется уравнением объемного расхода (сплошности, неразрывности) для элементарной струйки. Для потока несжимаемой жидкости с учетом (4.4) получим:

 

(4.6)

 

Уравнение (4.6) является частным случаем закона сохранения вещества при условии сплошности (неразрывности) течения.

При установившемся движении сжимаемой жидкости (газа) плотность в различных сечениях потока может быть различной, но масса газа, проходящая через живое сечение, будет постоянной. Тогда уравнение расхода для сжимаемой жидкости (газа) будет иметь вид:

 

(4.7)

 

Следует отметить, что уравнение (4.7) справедливо и для несжимаемой жидкости. При этом ρ1= ρ2= ρn=const.







Дата добавления: 2014-10-29; просмотров: 2577. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.001 сек.) русская версия | украинская версия