Студопедия — Уравнение Бернулли для элементарной струйки идеальной жидкости и потока вязкой жидкости
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Бернулли для элементарной струйки идеальной жидкости и потока вязкой жидкости






 

В элементарной струйке идеальной жидкости расположим декартовы оси координат таким образом, чтобы ось Z была параллельна вектору ускорения свободного падения g и направлена вертикально вверх. В данном частном случае jx=jy= 0 и jz=− g, уравнение (3.10) примет вид:

 

(5.5)

 

или

(5.6)

 

Проинтегрируем уравнение (5.6), в результате получим:

 

(5.7)

 

Зависимость (5.7) получена Д. Бернулли в 1738 г. и называется уравнением Бернулли для элементарной струйки идеальной жидкости.

В уравнении (5.7) hпз= р/(ρ g) и hг=z, как и в уравнении (3.13) геометрический и пьезометрический напоры, соответственно, hс= u2/(2g) называется скоростным или динамическим напором.

Таким образом, сумма геометрического, пьезометрического и скоростного напоров для любых сечений элементарной струйки идеальной жидкости есть величина постоянная.

Как известно из подраздела 3.3, геометрический напор z – удельная потенциальная энергия жидкости, апьезометрический напор р/(ρ g) – удельная потенциальная энергия давления.

Известно, что кинетическая энергия Ек выражается формулой: Ек=mu2/2. Кинетическая энергия, отнесенная к единице веса тела mg, называется удельной, т.е. ек= mu2/2g.

Тогда, уравнение (5/7) можно сформулировать следующим образом: сумма удельной потенциальной энергии положения, удельной потенциальной энергии давления и удельной кинетической энергии для любых сечений элементарной струйки идеальной жидкости есть величина постоянная.

Сумма геометрического, пьезометрического и скоростного напоров называется полным напором или полной удельной энергией элементарной струйки (потока) в данном живом сечении, т.е.

(5.8)

 

Для вывода уравнения Бернулли для потока вязкой жидкости введем понятие мощности потока. Мощность потока в определенном живом сечении – полная энергия, которую проносит поток через это живое сечение в единицу времени или работа, которую могла бы совершить жидкость, прошедшая через данное живое сечение за единицу времени.

Определим вначале мощность dN элементарной струйки в определенном живом сечении. Поскольку удельная энергия является энергией, отнесенной к единице веса жидкости, то

 

(5.9)

 

Мощность потока найдем путем интегрирования уравнения (5.9) по площади S:

(5.10)

 

Теоретически и экспериментально доказано, что для параллельноструйчатых или плавно меняющихся потоков гидростатический напор z+p/ρ g есть величина, одинаковая для всех точек для всех точек определенного живого сечения потока, т.е. при движении элементарные струйки оказывают одна на другую в поперечном направлении такое же давление, как слои в покоящейся жидкости:

В дальнейшем будем рассматривать такие или близкие к ним живые сечения потока. С учетом этих допущений уравнение (5.10) примет вид:

 

(5.11)

Найдем среднее значение полной удельной энергии (полного напора) в данном живом сечении потока. С учетом зависимости (4.3) получим:

 

(5.12)

 

Умножим и разделим последний член уравнения (5.12)на квадрат средней скорости потока u2ср:

 

где α – безразмерный коэффициент Кориолиса, учитывающий неравномерность распределения скоростей в живом сечении потока и равный:

 

(5.13)

 

Рассмотрим физическую сущность коэффициента Кориолиса. Для этого разделим и умножим зависимость (5.13) на ρ /2.

 

где екi – кинетическая энергия, которой обладает масса i-й элементарной струйки, прошедшая через данное живое сечение в единицу времени; Ек.ср – кинетическая энергия, которой обладает масса потока жидкости, прошедшая через то же живое сечение в единицу времени, и подсчитанная по средней скорости.

Для ламинарного течения жидкости α лам =2, для турбулентного α турб =1, 05…1, 15 [1, с.102; 8, с. 140]. При турбулентном течении жидкости, чем выше число Рейнольдса, тем ближе к единице α турб. Для Re > 104 с достаточной степенью точности для технических расчетов можно считать α турб =1. Различие в значениях α для ламинарного и турбулентного режимов течения жидкости связано с различными профилями скоростей при данных режимах (рис. 5.2). При ламинарном течении жидкости uср=0, 5 umах, а при турбулентном – uср=(0, 8…0, 95) umах [2, с.55-57; 7, с. 46], поэтому такое различие в значениях α. Следует отметить, что для ламинарного режима величину α можно получить теоретически, используя уравнения параболы и кинетической энергии.

При движении вязкой жидкости, в отличие от идеальной, из-за неравномерного распределения скоростей происходит относительное скольжение слоев или частиц жидкости. Кроме того, во многих случаях происходит вихреобразование и перемешивание жидкости. Все это требует затрат энергии. Поэтому часть энергии, которым обладает поток жидкости, расходуется на преодоление гидравлических сопротивлений и, следовательно, полная энергия потока уменьшается в направлении движения. Строго говоря, потерь энергии не наблюдается, а происходит преобразование части энергии потока в тепловую энергию, которая потом рассеивается в окружающем пространстве. Это преобразование является безвозвратным, поэтому и используется термин «потери полной энергии потока или полного напора».

Рассмотрим два сечения потока вязкой жидкости 1-1 и 2-2 (рис. 5.3), полные напоры в этих сечениях равны Нср1 и Нср2. Тогда

 

(5.14)

 

где Σ hп – суммарные гидравлические потери полного напора между сечениями1-1 и 2-2.

Используя зависимость для расчета Нср, получим соответствующее уравнение:

(5.15)

 

Полученное уравнение (5.15) является уравнением Бернулли для потока вязкой жидкости. Данное уравнение применимо не только для жидкостей, но и для газов в тех случаях, когда скорость их движения значительно меньше скорости звука [3, с.47].

Графически уравнение Бернулли можно представить соответствующей диаграммой (рис. 5.4). В качестве примера рассмотрим потери напора при течении жидкости по горизонтальному трубопроводу, состоящего из трех участков различного диаметра. В начале трубопровода (сечение А-А) средний полный напор потока равен НсрА. При движении жидкости от сечения А-А к сечению В-В происходит уменьшение полного напора, т.е. линия, характеризующая значение полного напора в любом сечении трубопровода (напорная линия), является падающей. Пьезометрический напор, в отличие от полного, в некоторых случаях может увеличиваться. Например, при внезапном расширении потока и, соответственно, уменьшении скоростного напора hс происходит увеличение пьезометрического напора hпз, т.е. Δ hс= u2срА/(2g)- u2срВ/(2g) переходит в пьезометрический напор.

При изменении геодезической высоты потока жидкости происходит изменение геометрического напора hг=z, при этом геометрический напор переходит в пьезометрический напор и обратно. В потерянный напор переходит только пьезометрический напор, причем этот процесс является необратимым:


Уравнение Бернулли применимо не только для жидкостей, но и для газов в тех случаях, когда скорость их движения значительно меньше скорости звука и температура газа по длине не меняется (изотермический процесс)[1, с. 287-290; 3, с.47], т.е. при расчетах вентиляционных воздуховодов, газопроводов низкого давления.

В дальнейшем при проведении анализа физических явлений и процессов, связанных с движению потоков жидкости или газа, будем использовать, как правило, среднюю скорость. Поэтому для упрощения написания формул индекс ср опустим, подразумевая, что буквой u обозначается средняя скорость потока.







Дата добавления: 2014-10-29; просмотров: 5896. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия