Потенциальная энергия упругой деформации
Для решения сложных задач расчета на прочность успешно применяется энергетический подход, в основе которого лежит определение работы внешних и внутренних сил, определение потенциальной энергии упругой деформации. Рассмотрим один подход к определению потенциальной энергии упругой деформации. Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде: А = U + K При действии статических нагрузок (или если сила прикладывается достаточно медленно, т. е. ее скорость приложения стремится к нулю) К = 0, следовательно, А = U Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. То есть, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется, например, в заводных пружинах часовых механизмов, в луке и т.д. Для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим простейший случай — растяжение стержня. На рисунке изображен растягиваемый силой F стержень, удлинение которого соответствует отрезку Δ l, а ниже показан график изменения величины удлинения стержня Δ l в зависимости от силы F. В соответствии с законом Гукаэтот график носит линейный характер (стержень растягивается в пределах упругих деформаций). Пусть некоторому значению силы F соответствует удлинение стержня Δ l. Дадим некоторое приращение силе dF. Соответствующее приращение удлинения составит d (Δ l). Тогда элементарная работа на этом приращении удлинения составит: dA = (F + dF)·d (Δ l) = F·d (Δ l) + dF· d (Δ l) вторым слагаемым, в силу его малости, можно пренебречь, и тогда dA = F·d (Δ l) Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы F на перемещении Δ l будет равна площади треугольника ОСВ A = U = 1/2·F·Δ l Для однородного стержня с постоянным поперечным сечением и при F = const, зная из закона Гука что Δ l = FL/EA (здесь и далее_A_ – площадь сечения), получим: U =21 F l =21 FFLEA =2 EAF 2 L Здесь Для оценки энергоемкости материала используют удельную потенциальную энергию, накапливаемую в единице объема: u= U/V, где V— объем стержня (V=L·A). Зная, что σ =F/A= Eε, для стержня (напряжения σ и деформации ε распределены по объему тела V равномерно) можем записать u = VU =2 EAF 2 L 1 LA = 22 E =2 Потенциальную энергию упругой деформации можем выразить через удельную потенциальную энергию: U = VudV
27. Теорема о взаимности работ (теорема Бетли). Два состояния упругой ситемы: D 11– перемещение по направл. силы Р1 от действия силы Р1; D12– перемещение по направл. силы Р1 от действия силы Р2; D21– перемещение по направл. силы Р2 от действия силы Р1; D22– перемещение по направл. силы Р2 от действия силы Р2. А12=Р1× D12 – работа силы Р1 первого состояния на перемещении по ее направлению, вызванном силой Р2 второго состояния. Аналогично: А21=Р2× D21 – работа силы Р2 второго состояния на перемещении по ее направлению, вызванном силой Р1 первого состояния. А12=А21. Такой же результат получается при любом числе сил и моментов. Теорема о взаимности работ: Р1× D12=Р2× D21. Работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния. Теорема о взаимности перемещений (теорема Максвелла) Если Р1=1 и Р2=1, то Р1d12=Р2d21, т.е. d12=d21, в общем случае dmn=dnm. Для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй единичной силы, вызванному первой силой. Универсальный метод определения перемещений (линейных и углов поворота) – метод Мора. К системе прикладывают единичную обобщенную силу в точке, для которой ищется обобщенное перемещение. Если определяется прогиб, то единичная сила представляет собой безразмерную сосредоточенную силу, если определяется угол поворота, то – безразмерный единичный момент. В случае пространственной системы действуют шесть компонентов внутренних усилий. Обобщенное перемещение определяется формулой (формула или интеграл Мора): Черта над М, Q и N указывает на то, что эти внутренние усилия вызваны действием единичной силы. Для вычисления входящих в формулу интегралов надо перемножить эпюры соответствующих усилий. Порядок определения перемещения: 1) для заданной (действительной или грузовой) системы находят выражения Mn, Nn и Qn; 2) по направлению искомого перемещения прикладывают соответствующую ему единичную силу (силу или момент); 3) определяют усилия от действия единичной силы; 4) найденные выражения подставляют в интеграл Мора и интегрируют по заданным участкам. Если полученное Dmn> 0, то перемещение совпадает с выбранным направлением единичной силы, если < 0, то противоположно.
Для плоской конструкции: . Обычно при определении перемещений пренебрегают влиянием продольных деформаций и сдвигом, которые вызываются продольной N и поперечной Q силами, учитываются только перемещения, вызываемые изгибом. Для плоской системы будет: . 28. Теорема Кастильяно. – перемещение точки приложения обобщенной силы по направлению ее действия равно частной производной от потенциальной энергии по этой силе. Пренебрегая влиянием на перемещение осевых и поперечных сил, имеем потенциальную энергию: , откуда . 29.Вычисление интеграла Мора способом Верещагина. Интеграл для случая, когда эпюра от заданной нагрузки имеет произвольное очертание, а от единичной – прямолинейное удобно определять графо-аналитическим способом, предложенным Верещагиным. , где W – площадь эпюры Мр от внешней нагрузки, yc– ордината эпюры от единичной нагрузки под центром тяжести эпюры Мр. Результат перемножения эпюр равен произведению площади одной из эпюр на ординату другой эпюры, взятой под центром тяжести площади первой эпюры. Ордината должна быть обязательно взята из прямолинейной эпюры. Если обе эпюры прямолинейны, то ординату можно взять из любой. Перемещение: . Вычисление по этой формуле производится по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Сложную эпюру Мр разбивают на простые геометрические фигуры, для которых легче определить координаты центров тяжести. При перемножении двух эпюр, имеющих вид трапеций, удобно использовать формулу: . Эта же формула годится и для треугольных эпюр, если подставить соответствующую ординату = 0. При действии равномерно распределенной нагрузки на шарнирно опертую балку эпюра строится в виде выпуклой квадратичной параболы, площадь которой (для рис. , т.е. , хС=L/2).
Для " глухой" заделки при равномерно распределенной нагрузке имеем вогнутую квадратичную параболу, для которой ; , , хС=3L/4. Тоже можно получить, если эпюру представить разностью площади треугольника и площади выпуклой квадратичной параболы: . " Отсутствующая" площадь считается отрицательной. 30. Канонические уравнения метода сил
Для получения дополнительных уравнений, о которых говорилось в предыдущем параграфе, нужно прежде всего превратить заданную, n раз статически неопределимую систему, в статически определимую, удалив из нее лишние связи. Полученная статически определимая система называется основной. Отметим, что преобразование заданной системы в статически определимую не является обязательным. Иногда используется модификация метода сил, в которой основная система может быть статически неопределимой, однако изложение этого вопроса выходит за рамки этого пособия. Устранение каких-либо связей не изменяет внутренние усилия и деформации системы, если к ней приложить дополнительные силы и моменты, представляющие собой реакции отброшенных связей. Значит, если к основной системе приложить заданную нагрузку и реакции удаленных связей, то основная и заданная системы станут эквивалентными.
где первый индекс означает направление перемещения и номер отброшенной связи, а второй указывает на причину, вызвавшую перемещение, т.е. - это перемещение по направлению i-ой связи, вызванное реакцией k-ой связи; - перемещение по направлению i-ой связи, вызванное одновременным действием всей внешней нагрузки.
где - единичное (или удельное) перемещение по направлению i-ой связи, вызванное реакцией т.е. реакцией, совпадающей по направлению с Xk, но равной единице.
Физический смысл уравнения (3): перемещение в основной системе по направлению i-ой отброшенной связи равно нулю.
Вид уравнения (4), т.е. количество слагаемых в каждом из них и их общее число, определяется только степенью статической неопределимости системы и не зависит от ее конкретных особенностей.
Коэффициенты системы канонических уравнений (4) определяются методом Мора-Верещагина путем перемножения соответствующих эпюр. Все эти коэффициенты, как указывалось выше, представляют собой перемещения; коэффициенты, стоящие при неизвестных – единичные перемещения, а свободные члены – грузовые. Единичные перемещения делятся на главные, расположенные по главной диагонали и имеющие одинаковые индексы и побочные (). Главные перемещения всегда положительные, в отличие от побочных. Симметрично расположенные перемещения в соответствии с теоремой о взаимности перемещений равны друг другу, т.е. .
|