Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ. .





 

Удар – это процесс кратковременного столкновения тел, при котором происходит значительное изменение скоростей тел, их импульсов. (Импульсом тела называется векторная величина, определяемая произведением массы тела на его скорость , импульсом силы является произведение силы на время ее действия .)

Силы удара могут быть сравнительно большими, так как, согласно второму закону Ньютона, изменение импульса тела равно импульсу силы: , и при малом времени удара D t сила удара может быть большой. В этом случае действием внешних сил на время удара можно пренебречь и считать систему соударяющихся тел замкнутой. Для замкнутой системы тел выполняется закон сохранения импульса: в замкнутой системе тел сумма импульсов тел постоянна, или сумма импульсов тел до взаимодействия равна сумме импульсов тел после взаимодействия:

 

или . (1)

 

Закон сохранения импульса является важнейшим законом механики. Он позволяет рассчитать скорости тел после взаимодействия, даже не имея представления о силах взаимодействия.

Существует две предельных идеализации реального удара: идеально упругий удар и абсолютно неупругий удар. При идеально упругом ударе тела в фазе сближения деформируются упруго, и часть кинетической энергии превращается в потенциальную энергию упругой деформации. Затем во второй фазе под действием упругих сил тела отталкиваются, форма тел восстанавливается, и потенциальная энергия деформации вновь превращается в кинетическую энергию. В результате кинетическая энергия сохраняется.

При абсолютно неупругом ударе тела деформируются пластически. Удар заканчивается на фазе сближения, и затем тела движутся совместно, как одно целое. Это является признаком неупругого удара. Так как часть кинетической энергии превращается в работу пластической деформации, во внутреннюю энергию, то кинетическая энергия не сохраняется. Диссипацию, то есть рассеяние кинетической энергии, характеризуют коэффициентом восстановления энергии. Он равен отношению кинетической энергии обоих тел после удара к их энергии до удара:

. (2)

Для идеально упругого удара К= 1, в других случаях К< 1.

Рассмотрим прямой центральный удар двух шаров, при котором скорости шаров направлены по линии центров масс и точка соприкосновения тоже находится на этой линии. Пусть правый шар массы т 1 со скоростью V1 налетает на покоящийся, V 2 = 0, левый шар массы т 2. Закон сохранения импульса для упругого и неупругого ударов в проекции на направление движения правого шара (рис. 1) будет иметь вид:

; (3)

 


. (4)

Скорости шаров определим по углам отклонения их нитей подвеса от вертикали. Приведем пример для правого шара. При движении от крайнего положения с высоты h потенциальная энергия переходит в кинетическую энергию. Согласно закону сохранения механической энергии

. (5)

Откуда .

Высота падения связана с углом отклонения нити длиной l соотношением . Для малых углов отклонения . Тогда скорость шара перед ударом будет пропорциональна углу отклонения . По таким же формулам можно определить скорости других шаров. Подставив их в уравнения (3) и (4), получим уравнения, проверяемые экспериментально:

 

, (6)

. (7)

 

Значение коэффициента восстановления энергии можно определить по углам отклонения шаров. Если подставить в формулу (2) скорости шаров, то получим для упругого и неупругого ударов:

 

; (8)

. (9)

Для неупругого удара теоретическое значение коэффициента восстановления энергии можно определить, подставив в формулу (2) скорость шаров после удара из (4):

 

. (10)







Дата добавления: 2014-10-29; просмотров: 864. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия