Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О ПРИБЛИЖЕННЫХ ВЫЧИСЛЕНИЯХ





 

Числовые значения величин, с которыми приходится иметь дело при решении задач, являются большей частью приближенными.

Такими величинами являются, в частности, многие константы, приводимые в справочнике. Например: нормальное ускорение свобод­ного падения g = 9, 81 м/с2, отношение длины окружности к диамет­ру p = 3, 14, масса электрона m = 9, 1× 10-31 кг и т.п. При более точном вычислении или измерении числовые значения этих величин будут содержать большее число значащих цифр g = 9, 80655 м/с2, p = 3, 1416, т = 9, 106× 10-31 кг. Однако и эти значения, в свою очередь, являются приближенными или в силу недостаточной точности измерения или в силу того, что получены путем округления еще бо­лее точных значений.

Часто неопытные лица добиваются при вычислениях получения такой точности результатов, которая совершенно не оправдывается точностью использованных данных. Это приводит к бесполезной зат­рате труда и времени.

Рассмотрим следующий пример. Пусть требуется определить плотность r вещества некоторого тела. При взвешивании тела на весах с точностью до 0, 01 г определили массу тела:

т = (9, 38 ± 0, 010) г.

Затем с точностью до 0, 01 см3 был измерен объем тела:

V = (3, 46 ± 0, 01) см3.

Без критического подхода к вычислениям можно получить такой ре­зультат:

r = m/V = 9, 38/3, 46 г/см3 = 2, 71098 г/см3.

Но числа 9, 38 и 3, 46 - приближенные. Последние цифры в этих числах сомнительные. Эти числа при измерении могли быть получе­ны такими: первое - 9, 39 или 9, 37, второе - 3, 45 или 3, 47. В са­мом деле, при взвешивании с указанной выше точностью могла быть допущена ошибка на 0, 01 как в сторону увеличения массы, так и в сторону ее уменьшения. То же самое и в отношении объема. Таким образом, плотность тела, если ее вычислять с точностью до пятого десятичного знака, как это сделано выше, могла оказать­ся:

r = 9, 39/3, 45 = 2, 7214 г/см3 или r = 9, 37/3, 47 = 2, 70029 г/см3.

Сравнение всех трех результатов показывает, что они отлича­ются уже вторыми десятичными знаками и что достоверным является лишь первый десятичный знак, а второй - сомнительным. Цифры, выра­жающие остальные десятичные знаки, совершенно случайны и способ­ны лишь ввести в заблуждение пользователя вычисленными результата­ми. Следовательно, работа по вычислению большинства знаков затра­чена впустую. Во избежание бесполезных затрат труда и времени принято вычислять кроме достоверных знаков еще только один сом­нительный.

В рассмотренном примере надо было вести вычисление до второ­го десятичного знака:

r = m/V = 9, 38/3, 46 г/см3 = 2, 71 г/см3.

Приближенные вычисления следует вести с соблюдением следу­ющихправил.

1. При сложении и вычитании приближенных чисел окончатель­ный результат округляют так, чтобы он не имел значащих цифр в тех разрядах, которые отсутствуют хотя бы в одном из слагаемых.

Например, при сложении чисел 4, 462 + 2, 38 + 1, 17273 + 1, 0262 = 9, 04093 следует сумму округлить до сотых долей, т.е. принять ее равной 9, 04, так как слагаемое 2, 38 задано с точ­ностью до сотых долей.

2. При умножении следует округлить сомножители так, чтобы каждый из них содержал столько значащих цифр, сколько их имеет сомножитель с наименьшим числом таких цифр. Например, вместо вычисления выражения 3, 723 × 2, 4 × 5, 1846, следует вычислять выраже­ние 3, 7 × 2, 4 × 5, 2.

В окончательном результате следует оставлять такое же ко­личество значащих цифр, какое имеется в сомножителях после их округления. В промежуточных результатах следует сохранять на одну значащую цифру больше. Такое же правило следует соблюдать и при делении приближенных чисел.

3. При возведении в квадрат или куб следует в степени брать столько значащих цифр, сколько их имеется в основании степени. Например, I, 322 » 1, 74.

4. При извлечении квадратного или кубического корня в ре­зультате следует брать столько значащих цифр, сколько их в под­коренном выражении. Например, 1, 171/2 » 1, 08.

При вычислении сложных выражений следует применять ука­занные правила в соответствии с видом производимых действий. Например,

(3, 2 + I7, 062) × 3, 71/2 / (5, 1 × 2, 007 × 103).

Сомножитель 5, 1 имеет наименьшее число значащих цифр - два. Поэтому результаты всех промежуточных вычислений должны округ­ляться до трех значащих цифр:

(3, 2 + I7, 062) × 3, 71/2 /(5, 1 × 2, 007 × 103)» 20, 3 × 1, 92/(10, 3 × 103

»39, 0/(10, 3 × 103)» 3, 79 × 103.

После округления до двух значащих цифр получаем результат 3, 8 × 10-3.

 

4. ОСНОВНЫЕ ФОРМУЛЫ







Дата добавления: 2014-10-29; просмотров: 990. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия