Случайные погрешности прямых измерений
Прямые измерения одной и той же величины дают после многократных повторений процесса измерения совокупность случайных величин, состоящую из конечного число элементов (n → ∞) а 1, а 2 ,......, a n. Истинное значение измеряемой величины никогда неизвестно. Обозначим его через а (без индекса). Тогда истинная абсолютная погрешность любого i - того измерения равна
Для серии n измерений получим
cовокупность абсолютных погрешностей Δ а i, содержащая n - ное число элементов (n не ∞). Величины Δ а i могут быть положительными, отрицательными и равными нулю. Следует отметить, что для совокупности абсолютных погрешностей выполняются два утверждения: 1) при большем числе измерений случайные погрешности одинакового значения, но разного знака встречаются одинаково часто. 2) большие (по абсолютной величине) погрешности встречаются реже, чем малые, то есть вероятность появления погрешности уменьшается с ростом значения погрешности. Очевидно, что обе совокупности - результаты серии прямых измерений величины а i и совокупность абсолютных погрешностей Δ а i описываются нормальным распределением Гаусса для конечного, но достаточно большого числа n измерений. Для совокупности n случайных измерений а i величины а, среднее равно истинному значению величины а. Для распределения абсолютных погрешностей это среднее равно нулю. Покажем это:
Суммируя левую и правую части равенств, получим
Если обозначить среднеарифметическую величину
При n достаточно большом
При ограниченном числе измерений теория вероятностей даёт вместо теоретических, величии Δ а i и σ конкретные «измеренные» величины абсолютной ошибки Δ а серии измерений при заданной надежности α и дисперсии σ. Обычно в эксперименте производится небольшое число измерений (n ≤ 20) и распределение Гаусса становится несправедливым. Для оценки границ доверительного интервала в этом случае вводится новый коэффициент tα, n. Этот коэффициент был предложен в 1908 году английским математиком B.C. Госсетом, публиковавшим свои работы под псевдонимом " Стьюдент" - студент. Задавая надежность α по таблицам Стьюдента, определим коэффициент tα, n, который необходим для вычисления абсолютной погрешности Δ а серии измерений. Коэффициенты Стьюдента tα больше единицы, это значит, что доверительный интервал увеличивается в несколько раз, чтобы при малом числе измерений получить требуемую надёжность результата. Распределение Стьюдента переходит в распределение Гаусса и tα → 1 при n → ∞. В теории погрешностей в качестве единицы ширины доверительного интервала выбрана так называемая средняя квадратичная погрешность результата измерений:
Было предложено в случае небольшого числа измерений (именно так обстоит дело в учебных лабораториях) вычислять полуширину доверительного интервала по формуле:
где ta, n - некоторое, зависящее от a и n число, называемое коэффициентом Стьюдента. Зависимость ta, n от n понятна: чем больше n, тем меньше отличается от истинного значения, и тем меньше будет доверительный интервал, точнее результат измерения, а значит меньше ta, n.
|