Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание № 3. Поэлементное количественное и порядковое соответствие





На стол ставят б маленьких бутылок (бутылки длиной в 2 — 3 см для игр с куклами), выстраивают их в ряд и показывают испытуемому поднос с набором стаканов:

«Посмотри. Это бутылочки. Что нужно, чтобы из них вы­пить? — Стаканы! — Хорошо. Вот стаканы. Возьми с под­носа столько же стаканов, сколько стоит бутылок, по ста­кану на бутылку». Ребенок сам строит соответствие, ставя стакан перед каждой бутылкой. Если он ошибается (в ту или иную сторону), его спрашивают: «Ты думаешь, что поровну?» Этот вопрос повторяют до тех пор, пока не убедятся, что ребенок сделал все, на что способен на дан­ном уровне развития. Достижение соответствия можно облегчить, предлагая переливать содержимое бутылок в стаканы: каждая бутылочка заполняет один стакан. Как только соответствие устанавливается, все 6 стаканов сдви­гают в небольшую груду и снова спрашивают: «А сейчас стаканов и бутылок поровну?» Если ребенок говорит:

«Нет», то продолжают: «Где больше?» и «Почему здесь больше?» Затем стаканы снова расставляют в ряд, а бу­тылки сдвигают в груду и т. д., при этом каждый раз по­вторяют вопросы.

Результаты будем классифицировать по трем стадиям, для которых характерно следующее: I. Отсутствие по­элементного соответствия и эквивалентности. П. Нали­чие поэлементного соответствия, но без прочной экви­валентности. III. Наличие соответствия и прочной экви­валентности.


(Могут быть примеры с яйцами и подставками, вазами и цветами). Соответствие между монетами и купленными предметами (Протокол № 3).

Задание № 4. Исследование качественного подобия и порядкового соответствия (Протокол № 4)

Пусть дан, например, ряд кукол-человечков, различа­ющихся по росту, и ряд тросточек различной длины; тро­сти и куклы приводятся в соответствие по их размерам. причем это соответствие рангов всегда можно легко вновь обнаружить после смешения обеих совокупностей. Здесь возможны три операции: простая качественная сериация, качественное соответствие между двумя сериациями (по­добие) и числовое (порядковое) соответствие между дву­мя сериями.

В качестве контрольных материалов используются гли­няные шары для лепки, тоже заметно различающиеся по объему.

Ребенку рассказывается нечто вроде истории с прогул­кой, с мотивировкой соответствия, но без явной ссылки на рост: «Расставь человечков и трости так, чтобы человеч­ки быстро смогли найти каждый свою трость». И, конечно, наставление продолжается до тех пор, пока ребенок не поймет принцип сериального соответствия. После построе­ния соответствующих друг другу двух рядов на глазах у ре­бенка их преобразуют следующим образом: оставив два ряда параллельными, сдвигают друг с другом куклы, уплотнив шары и трости так, чтобы соответствующие члены ряда кукол и ряда тростей более не находились друг перед дру­гом. И тогда, указав пальцем на какую-нибудь куклу, спра­шивают: «С какой тростью гуляет эта кукла?» Эти вопросы ставят, указывая на куклы и трости либо в их последова­тельном порядке, либо перескакивая с одного предмета на другой, в зависимости от ответов ребенка. Таков второй рассматриваемый в этом эксперименте вопрос.

Третий вопрос: после нескольких опытов предыдущего типа один из двух рядов (например, ряд тростей) подвер­гают инверсии (переворачивают задом наперед) таким образом, чтобы ряды продолжали оставаться параллель­ными, а наименьший член одного из рядов оказывался напротив наибольшего члена другого ряда и наоборот. После этого перед ребенком ставят те же вопросы, что и во время предыдущего опыта.

Четвертый вопрос: перемешивают члены одного из рядов, оставив другой ряд сериированным, или (в зави­симости от уровня развития ребенка) перемешивают оба ряда одновременно и просят испытуемого определить, какой шар или какая трость соответствует одной из кукол или наоборот.

Наконец, можно уточнить уровень понимания ребенка в форме пятого вопроса: смешиваем элементы обоих ря­дов, затем показываем определенную куклу (например, шестую), говоря: «Теперь куклы пойдут гулять, но не все, а только те, которые больше (или меньше), чем эта. По­этому найди трости для тех кукол, которые идут гулять, и для тех, которые остаются дома».

Систематизация полученных ответов сводится к трем проблемам: к проблеме построения сериального соответ­ствия, когда оно непосредственно уже не воспринимает­ся, и следовательно, проблеме перехода к порядковому соответствию (вопросы второй и третий) и проблеме вос­становления порядкового соответствия, когда наглядные серии нарушены (вопросы четвертый и пятый). (Протоко­лы № 5 - 7.)

Задание № 5. Исследование аддитивной композиции клонов и отношения клона и числа (Протоколы № 8 — 9)

Нужно было изучить отношение логического объема между терминами «некоторые» и «все» для выявления эле­мента квантификации, присущего любому сложению (как сложению клонов, так и сложению чисел). В этой связи мы провели ряд следующих опытов. Пусть имеется сово­купность индивидуальных предметов В, образующих ло­гический класс, который можно определить чисто каче­ственными терминами, и часть этой совокупности А, об­разующая подкласс, также определяемый качественными терминами. Проблема состоит в ответе на вопрос: «Боль­ше» ли элементов в общем классе В, чем во включенном классе А (другими словами, является ли класс В больше или «многочисленнее» подкласса А)?»

Возьмем, например, коробку с одними только дере­вянными бусинками (класс В), большинство которых (ко­ричневые бусинки — класс А), по две бусинки белые (бе­лые бусинки — класс А). Ребенку предлагается вопрос:

«Чего больше в коробке: деревянных бусинок В или ко­ричневых бусинок А?»


Задавали вопрос в еще более наглядных терминах. С од­ной стороны, мы спрашивали, какие из двух бус были бы самыми длинными: бусы, которые можно было бы сделать из деревянных бусинок (В) или из коричневых бусинок (А). При этом для лучшего уяснения разницы между А и В мы предварительно ставили рядом с коробкой с бусинками две пустые коробки и уточняли: «Если я выну коричневые бусинки и положу их сюда (первая пустая коробка), то ос­танутся ли бусинки в коробке (в полной)?» И еще: «Если я выну деревянные бусинки и положу их сюда (вторая пустая коробка), то останутся ли..?» И т. д.

Предлагалась также совокупность цветов (класс В), содержащая два десятка маков (класс А) и два или три василька (класс В), после чего спрашивали: «Какой букет будет самым большим: из всех цветов или из всех маков?» И т.д.

Задание № 6. Исследование аддитивной композиции чисел и арифметического соотношения части и целого (Протоколы № 10 — 11)

Мы будем последовательно применять три параллель­ных метода. Первый из них ставит своей целью устано­вить, способен ли ребенок понимать тождество целого в ходе различных аддитивных композиций его частей, на­пример: (4 + 4) = (1 + 7) = (2 + 6) = (3 + 5).

Конкретные условия эксперимента выглядят следующим образом. Ребенку объясняют, что его мама даст ему 4 кон­феты (и кладут 4 фасолины, расположенные квадратом) к завтраку в 10 часов, а 4 другие конфеты (расставленные таким же образом) к четырем часам; на следующий день ему дадут столько же конфет (располагают так же два квад­рата по 4 конфеты каждый), но так как в один из дней он менее голоден в 10 часов, чем в 4 часа, то в этот день он съедает утром только одну конфету, а все другие после обеда. На глазах у ребенка берут 3 конфеты третьего квад­рата и прибавляют их к четвертому, а затем предлагают ему сравнить обе кучки (4 + 4) и (1 + 7), спрашивая, поровну ли он съест конфет в оба дня или нет.

Что произойдет в том случае, когда между двумя цело-стностями потребуется произвести обмен, при котором часть первой целостности будет вычитаться ребенком и прибавляться к другой целостности? В этой связи ребенка просят уравнять две неравные величины.

Для этой цели ребенку дают две неравные совокупно­сти, например, состоящие из 8 и 14 жетонов, и предлага­ют ему: «Сделай так, чтобы жетонов было поровну» или «чтобы в той и другой кучке было столько же» (или «столь же многоо, в зависимости от словаря испытуемого). Для стимулирования рассказывают какую-нибудь историю, связанную с делением.

Когда ребенок заканчивает свои опыты уравнения, то от него сначала добиваются подтверждения («теперь по­ровну?»), затем, если неудача оказывается устойчивой, переходят к меньшим величинам или к опыту с более лег­ким вопросом, связанным с делением. Важно отметить, что операции уравнивания сами по себе недостаточны для полного анализа аддитивной композиции, и поэтому не­обходимо сравнивать их с дополнительными операциями деления.







Дата добавления: 2014-11-10; просмотров: 501. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия