Формат выходных данных. Формат выходного файла: x0 P(k)(x0) x1 P(k)(x1) xm P(k)(xm) – значение полинома или его производных в узлах результирующей сетки;
Формат выходного файла:
2.6. Практическая работа №6 «Приближение сплайнами»
Приближение сплайнами – еще один способ построения интерполирующих полиномов. В отличие от полиномов Ньютона и Лагранжа, степень которых зависит от количества узлов в исходной сетке, при построении сплайна его степень может варьироваться. Рис. 2.6.1 – Приближение сплайнами Так, мы можем построить линейные, параболические и кубические сплайны для сеток с произвольным количеством узлов. Следовательно, мы избавляемся от одного из недостатков интерполирующих полиномов, рассмотренных выше – сплайны имеют несложный математический вид и не осциллируют на сетках с большим количеством узлов (рис. 2.6.1). Итак, сплайн строится между двумя узлами сетки. Если он линейный, то это прямая линия, если параболический – парабола, если кубический – кривая третьего порядка. Т.е. от количества узлов зависит только количество сплайнов, но не их порядок. Таким образом, для сетки {xi} из n+1 узла (i = 0, 1, …, n) имеем n сплайнов Si(x), i = 1, 2, …, n–1, аргумент x должен лежать в интервале от xi до xi+1. Как мы уже знаем, по двум точкам прямая линия строится однозначно. Чтобы построить параболу, нужно либо задать еще одну точку, либо ввести так называемое граничное условие. Это значение не самой функции, а некоторой ее производной в одной из границ отрезка. В параболических сплайнах применяется первая производная. Чтобы построить кубическую кривую, надо либо задать еще две точки, либо ввести два граничных условия. В кубических сплайнах задают значение либо первой, либо второй производной в обеих границах отрезка. Хотя возможны и другие комбинации – значение первой и второй производной в одной из границ отрезка и т.п. Очевидно, что для вычисления интерполированного значения в некоторой точке x необходимо определить, в область определения какого сплайна это значение попадает. Из рисунка видно, что за пределами своей области определения значения сплайнов перестают интерполировать функцию с достаточной точностью. Для решения задач численного дифференцирования точности сплайнов уже не хватает.
|