Формат выходных данных. Формат выходного файла: a0 b0 c0 d0 a1 b1 c1 d1 an-1 bn-1 cn-1 dn-1 – коэффициенты сплайнов (естественно
Формат выходного файла:
2.7. Практическая работа №7 «Численное интегрирование функций»
Численное интегрирование функций – весьма важный раздел численных методов. При помощи интегралов решается широкий спектр практических задач, самые распространенные из которых – вычисление объемов и площадей тел, длин кривых и т.д. Помимо очевидного преимущества ЭВМ при проведении сложных расчетов, вспомним еще тот факт, что не все интегралы имеют первообразную, а значит, не все интегралы могут быть вычислены аналитически. В данной практической работе мы будем находить интегралы двумя способами. Первый заключается в интегрировании интерполяционных полиномов. Т.е. исходная функция заменяется некоторым интерполяционным полиномом, который легко интегрировать: (2.7.1) По аналогии с интерполяционными полиномами, для этого класса методов численного интегрирования задается исходная сетка {xi} и значение функции в узлах сетки {yi}, i = 0, 1, …, n. Если сетка равномерная, то достаточно знать границы отрезка a и b, а узлы при необходимости вычисляются по формулам (2.5.5) и (2.5.6). Второй способ заключается нахождении интеграла на отрезке [–1, 1] с подбором оптимальных узлов интегрирования: (2.7.2) Узлы ti подбираются таким образом, чтобы формула (2.7.2) была точной для степенного полинома максимально возможного порядка. При переходе к отрезку [a, b] имеем (2.7.3) (2.7.4) Существуют и другие подходы к вычислению интегралов. Например, статистические, или вероятностные (как и вероятностные методы решения СЛАУ, различные модификации этих методов называются методами Монте-Карло). Например, вычислить объем шара радиуса R статистически можно следующим образом. Будем случайным образом задавать N точек (xi, yi, zi), лежащие в кубе, в который вписан шар (т.е. каждая из координат должна лежать в диапазоне [–R, R]). Подсчитаем также количество точек M, оказавшихся внутри шара, т.е. для которых выполняется условие Очевидно, что отношение объемов куба и шара будет приблизительно пропорционально отношению общего количества точек и количества точек, попавших внутрь шара: Чем больше количество точек N, тем точнее будет выполняться данное соотношение, т.е. Учитывая, что VK = 8R3, получим
|