Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула трапеций. В формуле трапеций полагаем, что функция на отрезке [xi, xi+1] заменяется прямой линией, соединяющей точки (xi





В формуле трапеций полагаем, что функция на отрезке [xi, xi+1] заменяется прямой линией, соединяющей точки (xi, yi) и (xi+1, yi+1) (рис. 2.7.3).

Рис. 2.7.3 – Интегрирование формулой трапеций

Несложно записать уравнение прямой, проходящей через две точки:

Интегрируем:

(2.7.9)

Это же выражение можно легко получить из геометрических соображений (см. рис. 2.7.3).

Есть и еще один способ вывода данной формулы. Очевидно, что на каждом интервале функция заменяется полиномом первого порядка. Нам уже известны полиномы, интерполирующие табличную функцию по p+1 точке и дающие при этом степенной полином порядка p – это полиномы Ньютона и Лагранжа. Как уже было сказано, они являются разной формой записи одного и того же полинома, поэтому их применение даст одинаковый результат. Возьмем, например, полином Лагранжа. Тогда

(2.7.10)

Здесь A* – некоторые квадратурные коэффициенты. Если сетка равномерная, то делаем замену (2.5.9):

(2.7.11)

Т.к. сетка равномерная, квадратурные коэффициенты не зависят от индекса r. Используем выражение (2.5.6) и введем новые коэффициенты Hi:

(2.7.12)

(2.7.13)

Коэффициенты Hi называются коэффициентами Нью­то­на-Котеса. Для построения полинома первого порядка нужны всего две точки (т.е. p = 1), поэтому сетку можно считать равномерной. Интегрируя (2.7.13), получим

(2.7.14)

Т.е. полученное выражение совпадает с (2.7.9). Остается только просуммировать по всем интервалам:

(2.7.15)

Если сетка равномерная, то

(2.7.16)







Дата добавления: 2014-11-10; просмотров: 645. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия