Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кубические сплайны. По аналогии, из (2.6.1) получаем для кубического сплайна





По аналогии, из (2.6.1) получаем для кубического сплайна

(2.6.8)

Коэффициенты ищутся следующим образом:

(2.6.9)

Для коэффициентов bi

(2.6.10)

или

(2.6.11)

Неизвестные Mi находятся из решения СЛАУ

AM = g, (2.6.12)

где

(2.6.13)

(2.6.14)

M = (M1, M2, …, Mn–1).

Для кубического сплайна можно выбрать любой тип граничных условий (либо по первой, либо по второй производной). Соответственно, во входном файле будут находиться значения первой (A0 и An) или второй (B0 и Bn) производной в пер­вой и последней точке отрезка.

Если граничные условия заданы по второй производной, то M0 = B0, Mn = Bn, а остальные неизвестные Mi находятся решением СЛАУ (2.6.12).

Если граничные условия заданы по первой производной, то b0 = A0, bn = An. Тогда к системе можно добавить еще два уравнения, используя (2.6.10) при i = 0 и (2.6.11) при i = n, а также перенести в левую часть СЛАУ слагаемые с неизвестными коэффициентами из выражений для g1 и gn–1. Получим модифицированную СЛАУ

(2.6.15)

где

(2.6.16)

(2.6.17)

M = (M0, M1, M2, …, Mn).

Трехдиагональные СЛАУ (2.6.12) и (2.6.15) можно решать любым методом решения СЛАУ. Однако, учитывая их структуру, оптимальным будет использование метода прогонки.







Дата добавления: 2014-11-10; просмотров: 609. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия