Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формат выходных данных. Формат выходного файла: P – матрица Фробениуса; λi – i-е собственное число; |A-λiE| – проверка i-го собственного числа





Формат выходного файла:

P – матрица Фробениуса;
λ i – i-е собственное число;
|A-λ iE| – проверка i-го собственного числа (при m = 1);
xi – i-й собственный вектор (при m = 2);
Axiixi – проверка i-го собственного вектора (при m = 2);
ki – кратность i-го собственного числа/век­то­ра;
И т.д. для всех i = 1, 2, …, m.

2.4. Практическая работа №4 «Решение систем нелинейных уравнений»

Обязательных методов  
Баллов за обязательные методы  
Дополнительных методов  
Баллов за дополнительные методы  
Количество вариантов  

 

Не всегда системы уравнений, которые приходится решать в различных задачах, бывают линейными. Для решения систем нелинейных уравнений (СНУ) существует ряд специальных методов для их решения. По аналогии с решением уравнений с одной переменной, можно заключить, что численные методы позволяют быстрее получить приближенное решение при помощи ЭВМ. А также СНУ большой размерности аналитически очень тяжело решаются (если аналитическое решение вообще существует, что, как было показано выше, наблюдается далеко не всегда).

В матричном виде СНУ выглядит следующим образом:

f(x) = 0, (2.4.1)

где f = (f1, f2, …, fn)T, x = (x1, x2, …, xm)T, т.е.

Если n < m, то система может иметь множество решений. Если n > m, то система переопределена. В этом случае у нее может не быть решений. Мы будем рассматривать ситуацию с n = m. В этом случае количество решений зависит от вида системы функций F. Какое именно решение будет найдено, зависит от начальной точки x0.

Очевидно, что при n = m = 1 получим обычное уравнение с одной переменной. В принципе, все рассмотренные методы в таком случае вырождаются в методы решения уравнений с одной переменной (с двумя из них мы уже ознакомились ранее). Аналогией производной при n ≠ 1 выступает матрица Якоби

(2.4.2)

При n = 1 якобиан вырождается в обычную производную.







Дата добавления: 2014-11-10; просмотров: 741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия