Формат выходных данных. Формат выходного файла: P – матрица Фробениуса; λi – i-е собственное число; |A-λiE| – проверка i-го собственного числа
Формат выходного файла:
2.4. Практическая работа №4 «Решение систем нелинейных уравнений»
Не всегда системы уравнений, которые приходится решать в различных задачах, бывают линейными. Для решения систем нелинейных уравнений (СНУ) существует ряд специальных методов для их решения. По аналогии с решением уравнений с одной переменной, можно заключить, что численные методы позволяют быстрее получить приближенное решение при помощи ЭВМ. А также СНУ большой размерности аналитически очень тяжело решаются (если аналитическое решение вообще существует, что, как было показано выше, наблюдается далеко не всегда). В матричном виде СНУ выглядит следующим образом: f(x) = 0, (2.4.1) где f = (f1, f2, …, fn)T, x = (x1, x2, …, xm)T, т.е. Если n < m, то система может иметь множество решений. Если n > m, то система переопределена. В этом случае у нее может не быть решений. Мы будем рассматривать ситуацию с n = m. В этом случае количество решений зависит от вида системы функций F. Какое именно решение будет найдено, зависит от начальной точки x0. Очевидно, что при n = m = 1 получим обычное уравнение с одной переменной. В принципе, все рассмотренные методы в таком случае вырождаются в методы решения уравнений с одной переменной (с двумя из них мы уже ознакомились ранее). Аналогией производной при n ≠ 1 выступает матрица Якоби
При n = 1 якобиан вырождается в обычную производную.
|