Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение кратности собственных чисел и векторов





При поиске кратных корней возникают некоторые сложности. Дело в том, что если кратность корня четная, то в этой точке наблюдается экстремум (минимум или максимум) характеристического полинома, а если нечетная – то полином просто меняет знак. Пример приведен на рис. 2.3.1.

Согласно определению [1], корень уравнения ξ имеет кратность k, если не только функция в точке ξ принимает нулевое значение, но и k –1 ее производных:

f (i)(ξ) = 0, i = 0, 1, 2, …, k–1. (2.3.13)

При i = 0 имеем саму функцию. Таким образом, получаем k нулей функции и ее производных.

Рис. 2.3.1 – Поведение характеристического полинома

Учитывая погрешности вычислений на ЭВМ, при четной кратности корня характеристический полином может пройти либо выше, либо ниже нулевой отметки (рис. 2.3.2).

Рис. 2.3.2 – Погрешности при вычислении собственных чисел

Здесь ε и δ – достаточно малые числа. Т.о., программа может либо вообще не найти корня, либо найти сразу два. Поэтому договоримся считать корнем любое число λ i, для которого | f (λ i)| < δ. При этом, если два корня λ i1 и λ i2 расположены близко друг к другу (т.е. |λ i1 – λ i2| < 2ε), то корнем следует считать только один из них, либо за корень принять число, расположенное между ними:

λ i = (λ i1 + λ i2)/2. (2.3.14)

Поиск собственных чисел продолжается до тех пор, пока не будут найдены все, т.е. пока не выполнится условие (2.3.2).







Дата добавления: 2014-11-10; просмотров: 594. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия