Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение кратности собственных чисел и векторов





При поиске кратных корней возникают некоторые сложности. Дело в том, что если кратность корня четная, то в этой точке наблюдается экстремум (минимум или максимум) характеристического полинома, а если нечетная – то полином просто меняет знак. Пример приведен на рис. 2.3.1.

Согласно определению [1], корень уравнения ξ имеет кратность k, если не только функция в точке ξ принимает нулевое значение, но и k –1 ее производных:

f (i)(ξ) = 0, i = 0, 1, 2, …, k–1. (2.3.13)

При i = 0 имеем саму функцию. Таким образом, получаем k нулей функции и ее производных.

Рис. 2.3.1 – Поведение характеристического полинома

Учитывая погрешности вычислений на ЭВМ, при четной кратности корня характеристический полином может пройти либо выше, либо ниже нулевой отметки (рис. 2.3.2).

Рис. 2.3.2 – Погрешности при вычислении собственных чисел

Здесь ε и δ – достаточно малые числа. Т.о., программа может либо вообще не найти корня, либо найти сразу два. Поэтому договоримся считать корнем любое число λ i, для которого | f (λ i)| < δ. При этом, если два корня λ i1 и λ i2 расположены близко друг к другу (т.е. |λ i1 – λ i2| < 2ε), то корнем следует считать только один из них, либо за корень принять число, расположенное между ними:

λ i = (λ i1 + λ i2)/2. (2.3.14)

Поиск собственных чисел продолжается до тех пор, пока не будут найдены все, т.е. пока не выполнится условие (2.3.2).







Дата добавления: 2014-11-10; просмотров: 594. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия