Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы решения. Данная практическая работа выполняется по вариантам





Данная практическая работа выполняется по вариантам. Первый вариант – это метод Ньютона, второй – Лагранжа. Эти полиномы являются степенными.

Известно, что через две точки можно провести одну и только одну прямую, через три – одну и только одну параболу и т.д. Поэтому, через n+1 точку {xi} можно провести одну и только одну кривую порядка n. Отсюда можно сделать два вывода. Во-первых, чем больше количество точек в заданной сетке, тем выше, в общем случае, будет степень полинома P(x). Именно этим и объясняется осциллирующее поведение полиномов Ньютона и Лагранжа при большом количестве точек – просто их вид становится слишком сложным. Отметим, что для других интерполирующих полиномов это может быть и не так. Например, МНК, независимо от количества точек, дает полином, для которого выполняется условие (2.5.3). Т.е., если в качестве линейно-не­за­ви­си­мых функций взять φ i(x) = xi, i = 1, 2, …, m, то можно построить, например, кубический полином для любого количества точек (при m = 3). Порядок у него ниже, поэтому он более гладкий. При m = n МНК становится обычным интерполяционным полиномом. Во-вторых, полиномы Ньютона и Лагранжа совпадают, т.е. это просто две формы записи одного и того же полинома, и их можно преобразовать к следующему виду:

где ki – некоторые константы. Индекс n у полинома указывает на его порядок.

При этом, каждым вариантом необходимо реализовать 6 задач:

1. Вычисление полинома на равномерной сетке;

2. Вычисление полинома на неравномерной сетке;

3. Вычисление первой производной полинома на равномерной сетке;

4. Вычисление первой производной полинома на неравномерной сетке;

5. Вычисление второй производной полинома на равномерной сетке;

6. Вычисление второй производной полинома на неравномерной сетке;

При использовании равномерной сетки вводится новая переменная

(2.5.9)

и подставляется в полином и его производные. Таким образом, получается, что они зависят только от q, а x и {xi} явным образом в них не входят. Т.е. имеем P(q). Получить его можно самостоятельно, сделав замену (2.5.9) в полиноме P(x).

Выигрыш состоит в том, что не нужно хранить в памяти узлы сетки {xi}, поэтому ее используется примерно в два раза меньше.







Дата добавления: 2014-11-10; просмотров: 591. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия