Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы решения. Данная практическая работа выполняется по вариантам





Данная практическая работа выполняется по вариантам. Первый вариант – это метод Ньютона, второй – Лагранжа. Эти полиномы являются степенными.

Известно, что через две точки можно провести одну и только одну прямую, через три – одну и только одну параболу и т.д. Поэтому, через n+1 точку {xi} можно провести одну и только одну кривую порядка n. Отсюда можно сделать два вывода. Во-первых, чем больше количество точек в заданной сетке, тем выше, в общем случае, будет степень полинома P(x). Именно этим и объясняется осциллирующее поведение полиномов Ньютона и Лагранжа при большом количестве точек – просто их вид становится слишком сложным. Отметим, что для других интерполирующих полиномов это может быть и не так. Например, МНК, независимо от количества точек, дает полином, для которого выполняется условие (2.5.3). Т.е., если в качестве линейно-не­за­ви­си­мых функций взять φ i(x) = xi, i = 1, 2, …, m, то можно построить, например, кубический полином для любого количества точек (при m = 3). Порядок у него ниже, поэтому он более гладкий. При m = n МНК становится обычным интерполяционным полиномом. Во-вторых, полиномы Ньютона и Лагранжа совпадают, т.е. это просто две формы записи одного и того же полинома, и их можно преобразовать к следующему виду:

где ki – некоторые константы. Индекс n у полинома указывает на его порядок.

При этом, каждым вариантом необходимо реализовать 6 задач:

1. Вычисление полинома на равномерной сетке;

2. Вычисление полинома на неравномерной сетке;

3. Вычисление первой производной полинома на равномерной сетке;

4. Вычисление первой производной полинома на неравномерной сетке;

5. Вычисление второй производной полинома на равномерной сетке;

6. Вычисление второй производной полинома на неравномерной сетке;

При использовании равномерной сетки вводится новая переменная

(2.5.9)

и подставляется в полином и его производные. Таким образом, получается, что они зависят только от q, а x и {xi} явным образом в них не входят. Т.е. имеем P(q). Получить его можно самостоятельно, сделав замену (2.5.9) в полиноме P(x).

Выигрыш состоит в том, что не нужно хранить в памяти узлы сетки {xi}, поэтому ее используется примерно в два раза меньше.







Дата добавления: 2014-11-10; просмотров: 591. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия