Вычисление интеграла с заданной точностью
Рассмотрим случай, когда необходимо вычислить интеграл с заданной точностью, при этом точное значение интеграла не известно. В этом случае сначала интеграл считается на некоторой начальной сетке с количеством интервалов интегрирования n0 = n. Обозначим полученное значение интеграла как I0. Затем, аналогично, на сетке с количеством интервалов n1 = α ·n0 (α > 1) находим значение интеграла I1. Считая, что значение I1 найдено с большей точностью (т.к. сетка более частая), условно примем его за точное значение. Тогда относительную погрешность интегрирования можно оценить по формуле (2.7.25) Если она удовлетворяет заданной погрешности, то вычисления можно прекращать, иначе добавляем в сетку новые узлы и продолжаем процесс. В общем случае, nk = α ·nk–1 = α k·n0, (2.7.26) а процесс завершается при (2.7.27) Для упрощения разбиения отрезка интегрирования на интервалы, часто полагают α = 2. Примечания. 1. Формула для расчета относительной погрешности даст деление на ноль, если какой-либо из интегралов Ik получится равным нулю. Тогда погрешность интегрирования можно оценить по формуле для абсолютной погрешности: (2.7.28) 2. Т.к. в методах Чебышева и Гаусса количество отрезков интегрирования влияет на размер системы уравнений для поиска коэффициентов, ограничимся вычислением интеграла с заданной точностью только для обязательных методов.
|