Дискретные случайные переменные
Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1, х2,..., хn и что вероятности, с которыми переменная X принимает эти значения, соответственно равны p1, p2, …, pn. Заметим, что должно соблюдаться равенство: , (2.1) где суммирование распространяется на все возможные значения случайной переменной. В самом деле, сумма в левой части равенства (2.1) составляет вероятность того, что случайная переменная примет значение или x1, или х2, или х3 и так далее, причем такая возможность полностью охватывает все значения переменной. Но поскольку достоверно, что случайная переменная, безусловно, примет какое–либо из своих возможных значений, эта сумма должна равняться единице. Распределение дискретной случайной переменной можно представить двояко. Во-первых, это можно сделать в форме таблицы. В колонках (столбцах) такой таблицы помещают рядом возможные значения случайной переменной и соответствующие им вероятности. Например, в табл. 2.1 представлено распределение такой случайной переменной, как число очков, выпадающее при выбрасывании кости. Таблица 2.1 – Распределение вероятностей выпадения числа очков при выбрасывании кости
Второй способ, особенно удобный при различных аналитических действиях над случайными переменными, состоит в записи распределения случайной переменной с помощью аналитической формулы (например: биноминальное распределение).
|