Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретные случайные переменные





Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1, х2,..., хn и что вероятности, с которыми переменная X принимает эти значения, соответственно равны p1, p2, …, pn. Заметим, что должно соблюдаться равенство:

, (2.1)

где суммирование распространяется на все возможные значения случайной переменной. В самом деле, сумма в левой части равенства (2.1) составляет вероятность того, что случайная переменная примет значение или x1, или х2, или х3 и так далее, причем такая возможность полностью охватывает все значения переменной. Но поскольку достоверно, что случайная переменная, безусловно, примет какое–либо из своих возможных значений, эта сумма должна равняться единице.

Распределение дискретной случайной переменной можно представить двояко. Во-первых, это можно сделать в форме таблицы. В колонках (столбцах) такой таблицы помещают рядом возможные значения случайной переменной и соответствующие им вероятности. Например, в табл. 2.1 представлено распределение такой случайной переменной, как число очков, выпадающее при выбрасывании кости.

Таблица 2.1 – Распределение вероятностей выпадения числа очков при выбрасывании кости

Число выпадающих очков            
Вероятность 1/6 1/6 1/6 1/6 1/6 1/6

 

Второй способ, особенно удобный при различных аналитических действиях над случайными переменными, состоит в записи распределения случайной переменной с помощью аналитической формулы (например: биноминальное распределение).







Дата добавления: 2014-11-10; просмотров: 626. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия