Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моменты




Большое значение в математической статистике имеют так называемые моменты распределения случайной переменной. В математическом ожидании большие значения случайной величины учитываются недостаточно. Дополнительной числовой характеристикой случайной величины, которая детальнее характеризует ее, являются моменты различных порядков. Не вдаваясь в подробное изложение теории моментов, приведем определение двух основных типов моментов.

Начальным моментом k-го порядка случайной переменной X называется математическое ожидание k-ой степени ее: μk = Е(Хk). Центральным моментом k-го порядка случайной переменной X называется математическое ожидание k-ой степени отклонения X от ее математического ожидания: . Если X – непрерывная случайная переменная, плотность вероятности которой есть f(х), то моменты μk и ηk вычисляют по формулам:

(2.13)

В этих формулах (с, d), как и ранее, обозначает интервал, в границах которого случайная переменная X меняет свое значение. Принимается, что моменты μk и ηk случайной переменной существуют тогда и только тогда, когда интегралы в формулах (2.13) являются абсолютно сходящимися. Если X – дискретная переменная, то для вычисления μk и ηk необходимо заменить интегралы соответствующими рядами, причем моменты существуют тогда и только тогда, когда эти ряды абсолютно сходятся.

Следует отметить, что математическое ожидание и дисперсия суть частные случаи моментов. Математическое ожидание Е(Х) есть первый начальный момент μ1, а дисперсия D2(X) есть второй центральный момент η2. В статистическом анализе большое значение имеют также центральные моменты третьего и четвертого порядков. Третьи центральные моменты служат для оценки степени скошенности распределения (асимметрия). О центральных моментах четвертого порядка говорят, что они измеряют степень сглаженности (эксцесс) кривой плотности вероятности.

 

Вопросы для самоконтроля

1 Каким образом можно представить распределение дискретной случайной переменной?

2 Дайте определение случайной переменной.

3 Дайте определение дискретной и непрерывной случайной переменной.

4 При каких условиях случайная переменная называется непрерывной?

5 Дайте определение математического ожидания и дисперсии.

6 Чему равно значение математического ожидания при одинаковой вероятности величин случайной переменной?

7 Могут ли две случайные величины обладать одинаковым математическим ожиданием и различной дисперсией? Приведите практические примеры.

8 Какова размерность среднего квадратического отклонения?

9 Моментам какого порядка соответствуют математическое ожидание и дисперсия? Приведите формулы.

10 Моментам какого порядка соответствуют степени скошенности распределения и степени сглаженности кривой плотности вероятности.

 

ТЕМА 3 Дискретные распределения

3.1 Биномиальное распределение и измерение вероятностей

3.2 Распределение редких событий (Пуассона)







Дата добавления: 2014-11-10; просмотров: 378. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.004 сек.) русская версия | украинская версия