Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные случайные переменные





В противоположность дискретным случайным переменным, рассмотренным в предыдущем подразделе, совокупность возможных значений непрерывной случайной переменной не только не конечна, но и не поддается вычислению. Следовательно, если случайная переменная непрерывна, то она может принять любое действительное значение в некоторых пределах, конечных или бесконечных.

Из приведенных определений дискретных и непрерывных случайных переменных видно, что существует соответствие между понятиями дискретных и непрерывных признаков в теоретической статистике и вероятностными понятиями дискретных и непрерывных случайных переменных. В математической статистике каждый наблюдаемый признак единиц исследуемой совокупности рассматривается как случайная переменная. Такое толкование возможно благодаря допущению, что статистические наблюдения как бы «случайно отобраны» из определенных совокупностей. Если этот признак дискретен, то соответствующим ему понятием в теории вероятностей будет дискретная случайная переменная, если же исследуемый статистический признак непрерывен, то он интерпретируется как непрерывная случайная переменная.

В анализе распределений вероятностей случайных переменных применяется, так называемая, дистрибуанта или функция распределения случайной величины F(x). Это есть функция, выражающая вероятность того, что случайная переменная примет какое-то значение, меньшее x.

F(x) = P{X< x}

Поскольку функция распределения вероятности выражает вероятность некоторого случайного события, то любая (дискретная или непрерывная) случайная переменная удовлетворяет условию:

0≤ F(x)≤ 1

Производная от функции распределения вероятности называется функцией плотности распределения вероятности f(x) или короче – плотностью вероятности

Ее можно истолковать, как среднее «количество вероятности», приходящееся на единицу длины интервала (х, х+Δ х), когда длина этого интервала стремится к нулю. Если случайная переменная X непрерывна в каждой точке х, и если для каждого значения х существует производная , которая непрерывна, то случайная переменная X называется непрерывной случайной переменной.

Отметим теперь, что если случайная переменная может принимать значения в интервале (с, d), то всегда

(2.2)

Выражение (2.2) есть аналог выражения (2.1) для дискретных случайных переменных.







Дата добавления: 2014-11-10; просмотров: 687. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия