Множественный коэффициент корреляции
Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса после тире): ; (12.6) ; (12.7) (12.8) Эти формулы позволяют легко вычислить множественные коэффициенты корреляции при известных значениях коэффициентов парной корреляции rxy, rxz и ryz. Коэффициент R не отрицателен и всегда находится в пределах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается. Между коэффициентом множественной корреляции, например Ry-xz, и двумя коэффициентами парной корреляции ryx и ryz существует следующее соотношение: каждый из парных коэффициентов не может превышать по абсолютной величине Ry-xz. Квадрат коэффициента множественной корреляции R2 называется коэффициентом множественной детерминации. Он показывает долю вариации зависимой переменной под воздействием изучаемых факторов. Значимость множественной корреляции оценивается по , (12.9) где: n – объем выборки, k – число признаков; в нашем случае k = 3. Теоретическое значение F –критерия берут из таблицы приложений для ν 1 = k –1 и ν 2 = n–k степеней свободы и принятого уровня значимости. Нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (H0: R = 0) принимается, если Fфакт. < Fтабл . и отвергается, если Fфакт.≥ Fтабл.
|