Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение множественной регрессии





Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

(12.10)

Здесь Y – зависимая переменная, X и Z – независимые переменные, а – общее начало отсчета, b1 и b2 – коэффициенты частной регрессии. Коэффициент b1 показывает, на какую величину увеличивается Y при каждом увеличении на одну единицу X при постоянном значении Z; коэффициент b2 указывает, на какую величину увеличивается Y при увеличении Z на единицу при постоянном значении X. Поэтому часто используют обозначения
b1 = byx-z и b2 = byz-x, принятые для частных коэффициентов корреляции.

Параметры а, b1 и b2 вычисляют методом наименьших квадратов, который позволяет найти такое положение плоскости регрессии в пространстве, когда сумма квадратов отклонений эмпирических точек от нее является минимальной:

(12.11)

Установленное уравнением регрессии отношение зависимости коррелируемых признаков принято изображать графически в виде линий и поверхности регрессии. Поверхность регрессии дает четкое представление об эффекте комбинированного влияния изучаемых факторов на результативный признак.

Необходимо подчеркнуть, что математические уравнения для парной и множественной регрессии имеют смысл только в области фактических значений X, Y и Z только тогда, когда корреляционная связь значимо отличается от нуля.

 

Вопросы для самоконтроля

 

1 Что такое множественная корреляция?

2 Дайте определение частному коэффициенту корреляции.

3 С какими статистическими характеристиками формально связан частный коэффициент корреляции?

4 Дайте определение ошибке и критерию значимости частной корреляции. Отличен ли он от ошибки и критерия значимости парной корреляции?

5 Какие могут принимать значения частные коэффициенты корреляции?

6 Дайте определение множественному коэффициенту корреляции.

7 С какими статистическими характеристиками формально связан множественный коэффициент корреляции?

8 В каких пределах находятся значения множественного коэффициента корреляции?

9 Дайте определение коэффициента множественной детерминации.

10 По какому критерию оценивается значимость множественной корреляции?

11 Напишите линейное уравнение множественной регрессии.

12 Дайте графическую интерпретацию уравнения множественной регрессии.

ТЕМА 13 Криволинейная корреляция и регрессия

13.1 Корреляционное отношение

13.2 Свойства корреляционного отношения

13.3 Ошибка репрезентативности корреляционного отношения

13.4 Критерий линейности корреляции

 







Дата добавления: 2014-11-10; просмотров: 692. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия