Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение множественной регрессии





Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

(12.10)

Здесь Y – зависимая переменная, X и Z – независимые переменные, а – общее начало отсчета, b1 и b2 – коэффициенты частной регрессии. Коэффициент b1 показывает, на какую величину увеличивается Y при каждом увеличении на одну единицу X при постоянном значении Z; коэффициент b2 указывает, на какую величину увеличивается Y при увеличении Z на единицу при постоянном значении X. Поэтому часто используют обозначения
b1 = byx-z и b2 = byz-x, принятые для частных коэффициентов корреляции.

Параметры а, b1 и b2 вычисляют методом наименьших квадратов, который позволяет найти такое положение плоскости регрессии в пространстве, когда сумма квадратов отклонений эмпирических точек от нее является минимальной:

(12.11)

Установленное уравнением регрессии отношение зависимости коррелируемых признаков принято изображать графически в виде линий и поверхности регрессии. Поверхность регрессии дает четкое представление об эффекте комбинированного влияния изучаемых факторов на результативный признак.

Необходимо подчеркнуть, что математические уравнения для парной и множественной регрессии имеют смысл только в области фактических значений X, Y и Z только тогда, когда корреляционная связь значимо отличается от нуля.

 

Вопросы для самоконтроля

 

1 Что такое множественная корреляция?

2 Дайте определение частному коэффициенту корреляции.

3 С какими статистическими характеристиками формально связан частный коэффициент корреляции?

4 Дайте определение ошибке и критерию значимости частной корреляции. Отличен ли он от ошибки и критерия значимости парной корреляции?

5 Какие могут принимать значения частные коэффициенты корреляции?

6 Дайте определение множественному коэффициенту корреляции.

7 С какими статистическими характеристиками формально связан множественный коэффициент корреляции?

8 В каких пределах находятся значения множественного коэффициента корреляции?

9 Дайте определение коэффициента множественной детерминации.

10 По какому критерию оценивается значимость множественной корреляции?

11 Напишите линейное уравнение множественной регрессии.

12 Дайте графическую интерпретацию уравнения множественной регрессии.

ТЕМА 13 Криволинейная корреляция и регрессия

13.1 Корреляционное отношение

13.2 Свойства корреляционного отношения

13.3 Ошибка репрезентативности корреляционного отношения

13.4 Критерий линейности корреляции

 







Дата добавления: 2014-11-10; просмотров: 692. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия