Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1.Для построения поля корреляции щелкнем по кнопке Мастер диаграмм





1. Для построения поля корреляции щелкнем по кнопке Мастер диаграмм . В окне Мастер диаграмм на вкладке Стандартные в списке диаграмм выберем Точечная, нажмем кнопку Далее. Диапазон данных введем с учетом наименования факторов (рис. 1).

 

Рис. 1. Ввод диапазона данных

Нажмем кнопку Далее. На следующем шаге на вкладке Заголовки введем название диаграммы и осей, как показано на рис. 2.

 

Рис. 2. Ввод заголовков диаграммы

Нажмем Далее. На 4-м, последнем, шаге укажем, что диаграмма должна быть построена на имеющемся листе, и нажмем Готово. Поместим диаграмму ниже таблицы данных.

Вывод: по расположению точек на корреляционном поле полагаем, что зависимость между переменными x и y линейная, т.е. эмпирическое уравнение модели будет иметь вид ŷ = a + b x.

2. Для расчета оценок параметров линейной регрессии дополним табл. 1 исходных данных тремя столбцами , , xiyi. Рассчитаем суммы и средние значения по каждому столбцу по формулам (5) (рис. 3).

Рис. 3. Результаты расчета сумм и средних значений

Выпишем отдельно средние значения факторов , найдём выборочные дисперсии , по формулам (6), (7) и оценки параметров a и b по формулам (3) и (4). Результаты расчётов показаны на рис. 4.

 

Рис. 4. Результаты расчёта средних, выборочных дисперсий
и параметров модели

Получим оценки параметров, используя функцию ЛИНЕЙН из категории Статистические.

Поскольку эта функция возвращает массив значений, задаваться она должна в виде формулы массива. Для этого сначала выделим мышкой ячейки для возвращаемых значений a и b (в данном случае две ячейки в одной строке), а после ввода аргументов функции (рис. 5), поместив курсор в командную строку и удерживая нажатыми клавиши «Ctrl» и «Shift», нажмем «Enter».

 

Рис. 5. Заполнение полей аргументов функции ЛИНЕЙН

Результаты расчетов по формулам (3) и (4) и с использованием функции ЛИНЕЙН, очевидно, должны совпадать (рис. 6).

Рис. 6. Результат расчета коэффициентов с помощью функции ЛИНЕЙН

Вывод: эмпирическое уравнение регрессии имеет вид:

= 76, 976 + 0, 9204 x.







Дата добавления: 2014-11-10; просмотров: 590. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия