Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЕРОЯТНОСТЬ





При неоднократном измерении одной и той же величины x ре­зультаты отдельных измерений х 1, х 2... х n будут неодинаковы из-за наличия случайных ошибок.

В курсе математической статистики доказывается, что наилучшей оценкой истинного значения А измеряемой величины х является ее среднее арифметическое значение:

, (2)

где n – число измерений; - результат отдельного измерения величины А.

Ошибка нам тоже неизвестна, поэтому имеется какая-то вероятность того, что истинное значение А лежит в некоторых пределах вблизи . Важно найти эти пределы или интервал, в пределах которого с заданной вероятностью обнаружится значение определяемой величины А. Для этого выбирают некоторую вероятность α, близкую к 1, и определяют для нее интервал от до , в котором бы находилось значение определяемой величины. Этот интервал называется доверительным интервалом, а вероятность α - доверительной вероятностью, - доверительная граница общей погрешности измерений.

Поясним смысл терминов: доверительная граница общей погрешности и доверительная вероятность α. Для этого используем числовую ось.

Пусть среднее значение измеряемой величины – (рис.1). Отложим от справа и слева. Полученный числовой интервал от до называется доверительным интервалом.

 

Рис. 1

 

Результаты ряда измерений можно наглядно представить в виде диаграммы, которая показывает, как часто получаются те или иные значения. Такая диаграмма называется гистограммой.

Чтобы построить гистограмму, надо весь диапазон измеренных значений от x min до х max разбить на равные интервалы (рис. 2) и подсчитать относительную частоту Δ n / n попаданий результатов измерения в каждый интервал (n – число всех измерений, Δ n – число измерений, попадающих в данный интервал).

Рис. 2 Рис. 3

 

Если увеличивать число измерений, ступенчатая кривая будет приближаться к гладкой кривой, которая называется кривой распределения случайной величины x i. Величина f (x), пропорциональна доле числа отсчетов Δ n / n, попадающей в каждый интервал. Она называется плотностью вероятности.

Смысл плотности вероятности заключается в том, что произведение f (x) dx дает долю полного числа отсчетов n, приходящуюся на интервал от x до x + dx или, иначе говоря, вероятность того, что результат любого отдельного измерения х i будет иметь значение, лежащее в указанном интервале. Эта вероятность численно равна площади заштрихованной криволинейной трапеции Δ S.

Вся площадь под кривой распределения определяется как произ­ведение вероятности попадания измеренного значения на всю числовую ось х и равна 1, т.е.

,

где Р (х) – функция распределения случайной величины х.

Математически закон распределения случайной величины х выражается законом Гаусса (нормальный закон распределения) и имеет вид

f (x)= (3)

где f (x) – функция плотности вероятности; е – основание натурального логарифма; х – результат очередного измерения; А – истинное значение измеряемой величины; 2 дисперсия, которая определяется по формуле

.

Поскольку дисперсия имеет размерность квадрата случайной величины, а это не всегда удобно, то вводится средняя квадратичная ошибка , которая представляет собой положительный квадратный корень из дисперсии:

.

Если средняя квадратичная ошибка неизвестна, то вместо нее используют величину S () - среднее квадратичное отклонение среднего результата.

. (4)

Как видно из выражения (3), функция плотности вероятности для распределения Гаусса является функцией двух параметров – А и σ. Распределение Гаусса симметрично относительно А (или ), его ширина пропорциональна σ (рис.4). Чем точнее измерения, тем плотнее вблизи среднего значения лежат результаты отдельных измерений, т.е. величина σ меньше. С уменьшением σ фигура, образуемая кривой распределения, сужается и вытягивается вверх. При этом площади под кривыми распределения будут равны между собой, т.к. вероятность попадания случайной величины на всю числовую ось равна 1. С увеличением числа измерений S () стремится к средней квадратичной ошибке

Рис. 4 Следовательно, S () является приближенным значением средней квадратичной ошибки σ, т.е. ее оценкой, которая тем ближе к σ, чем больше число проведенных измерений. Из формулы (4) следует, что с увеличением числа измерений средняя квадратичная ошибка изменяется обратно пропорционально корню квадратному из числа измерений. Однако в действительности существует предел уменьшения средней квадратичной ошибки за счет

увеличения числа измерений. Существование этого предела обусловлено наличием систематических ошибок, которые в действительности всегда существуют и не изменяются при увеличении числа измерений. Поэтому обычно производят небольшое (5-6) число измерений.

Задаваясь определенной доверительной вероятностью α, можно определить отношение доверительной границы случайной погрешности ε к среднему квадратичному отклонению S (), т.е. найти

Отношение называется коэффициентом Стьюдента, который не зависит от среднего квадратичного отклонения, а зависит лишь от вы­бора доверительной вероятности и числа измерений n. Это позволило Стьюденту составить таблицу значений коэффициентов (табл.).

 







Дата добавления: 2014-11-10; просмотров: 578. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия