Теоретические сведения. В механике под твердым телом подразумевают абсолютно твердое тело, т
В механике под твердым телом подразумевают абсолютно твердое тело, т. е. тело деформациями которого можно пренебречь. При вращении твердого тела все его точки движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения. Быстроту вращения характеризуют углом поворота тела в единицы времени. Если за любые равные промежутки времени тело поворачивается на одинаковые углы, вращение называется равномерным. Величина, определяющая изменение угла поворота за единицу времени, называется угловой скоростью. Угловая скорость определяется по формуле . Единицей измерения угловой скорости является рад/с. При неравномерном вращении изменение угловой скорости со временем характеризуется угловым ускорением, которое вычисляется по формуле . Единица измерения углового ускорения является рад/с2. Угловая скорость ω и угловое ускорение ε связаны с линейной скоростью и линейным (тангенциальным) ускорением следующими соотношениям: и , (1) где –расстояние от точек до оси вращения При вращении тела вокруг неподвижной оси изменение угловой скорости и его движения зависит от действующего момента силы. Моментом силы относительно неподвижной точки О называется векторная величина, определяемая векторным произведением радиуса-вектора , проведенного из точки О в точку Априложения силы, на силу (рис. 1). , где –псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к .
Модуль момента силы , где –угол между и ; –плечо силы - кратчайшее расстояние между линиями действия силы и точкой О. Моментом силы относительно неподвижной оси , называется скалярная величина , равная проекции на эту ось вектора момента силы , определенного относительно произвольной точки О, данной на оси (рис. 2). Значение момента не зависит от выбора положения точки О на оси . Равнопеременное вращательное движение тел характеризуется постоянным угловым ускорением, оно появляется под действием сил, момент которых постоянен по величине и направлению. Зависимость углового ускорения от момента силы выражена в основном законе динамики вращательного движения , (2) где - момент инерции тела. Момент инерции материальной точки относительно какой-либо оси вращения называется скалярная величина, равная произведению массы m этой точки на квадрат расстояния от точки до оси вращения: . Моментом инерции тела относительно данной оси вращения называют сумму моментов инерции элементарных масс, на которые разбивается тело: , где - элементарная масса; - расстояние от элементарной массы до оси вращения. Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями: . Законы вращения тел можно изучить с помощью маятника Обербека. Рассмотрим движения механической системы представленной на рис. 3. Груз массой m движется с ускорением под действием результирующей силы тяжести и силы натяжения нити (рис. 3). Запишем для груза второй закон Ньютона в проекции на направление движения:
Сила натяжения нити создает вращательный момент относительно горизонтальной оси O, направленный вдоль этой оси «от нас» и приводящий в движение маятник Обербека. Величина момента силы равна , (4) где – радиус диска, на который намотана нить. Основной закон динамики вращательного движения (2) в скалярном виде и с учетом момента силы (4) примет вид (записаны проекции векторов моментов сил и углового ускорения на ось вращения О, направление которой выбрано «от нас»): . (5) Используя кинематическую связь линейного и углового ускорения (1), а также уравнение движения груза при нулевой начальной скорости , выразим через величины и : . (6) Преобразуем уравнение (5), используя выражение (6) и и получим момент инерции маятника Обербека . (7) Эту зависимость можно использовать для экспериментальной оценки величины момента инерции маятника Обербека. Теоретический расчет момента инерции маятника Обербека представляет сумму моментов инерций - момента инерции диска радиусом , - моментов инерции четырех подвижных грузов и - момента инерции крестовины маятника без груза . . В связи с тем, что размеры грузов малы по сравнению с расстоянием от оси вращения до центров масс грузов, то грузы можно считать материальными точками. Для материальной точки момент инерции равен , где – масса груза на крестовине; – расстояние от оси вращения до центра грузов. Момент инерции крестовины маятника без груза определяется как , где – масса стержня без груза; - длина стержня крестовины. Таким образом, теоретический расчет момент инерции маятника можно представить следующей формулой . Расчет разности моментов инерции и для двух различных расстояний и позволит исключить слагаемые и . Тогда теоретический расчет момента инерции маятника будет определяться по формуле . (8) Расчет момента инерции маятника по формуле (7) при различных расположениях грузов на крестовине можно теоретически проверить величиной момента инерции , рассчитанного по формуле (8).
|