Влияние водно-химического режима на работу оборудования ТЭС и АЭС
Изменение параметров теплоносителя в пароводяном цикле ТЭС и АЭС неизбежно сопровождается изменением теплофизических и физико-химических свойств пара и воды (вязкости, плотности, теплоемкости и растворимости), что в свою очередь обуславливает специфические особенности поведения примесей на различных участках тепловой схемы ТЭС и АЭС. Если бы в рабочей среде, циркулирующей в основном и теплофикационном контурах, а также в системах охлаждения не было бы никаких примесей, многие проблемы и осложнения в работе электростанций исчезли. Полностью отпали бы проблемы, связанные с образованием на поверхностях, соприкасающихся с паром и водой, твердых отложений, содержащих соли кальция, магния, натрия, кремнекислоту. Из опыта эксплуатации ТЭС и АЭС известно, что солевые отложения в больших или меньших количествах образуются на поверхностях нагрева парогенераторов, в пароперегревателях, в лопаточном аппарате турбин, на трубках конденсаторов. Трудноудаляемые отложения кремнекислоты встречаются, главным образом, в проточной части турбин. Образование таких отложений оказывает крайне отрицательное влияние на работу как основного, так и вспомогательного оборудования потому, что отложения имеют коэффициенты теплопроводности в 20-30 раз ниже, чем металл. В ряде случаев загрязнение отдельных теплопередающих поверхностей отложениями, кроме снижения коэффициента теплопроводности, приводит к увеличению шероховатости стенок, уменьшению проходных сечений (т.е. увеличению потерь на трение). Все это при относительно невысоких температурах рабочей среды, например, в регенеративных и сетевых подогревателях, экономайзерах, конденсаторах турбин и т.д. сказывается лишь на экономических показателях работы оборудования (при толщине δ =0, 1 – 0, 2 мл – пережог топлива составляет порядка 1, 5 – 2, 5%). При высоких же температурах – в пароперегревателе, экранных трубах, наряду с ухудшением показателей экономичности резко снижается и надежность работы оборудования. При сжигании таких высококалорийных топлив, как газ и мазут, тепловой поток в экранных трубах может достигать 700 кВт/м2, что при образовании на внутренней поверхности нагрева даже незначительных по толщине отложений (~0, 1 мм) приводит к размягчению металла и его деформации под действием давления рабочей среды. В результате на трубах появляются выпуклости (отдулины), которые со временем приводят к разрыву металла. При резких температурных колебаниях в стенках парообразующих труб, которые могут иметь место в процессе эксплуатации парогенератора, накипь отслаивается от стенок в виде хрупких и прочных чешуек, которые заносятся потоками циркулирующей воды в места с замедленной циркуляцией. Там происходит их осаждение в вида беспорядочного скопления кусочков различной величины и формы, сцементированных шламом в более или менее плотные образования. Если в парогенераторе барабанного типа имеются горизонтальные и слабонаклонные участки парообразующих труб с вялой циркуляцией, то именно в них и происходит скопление рыхлого шлама. Сужение сечения для прохода котловой воды или полная закупорка парообразующих труб приводит к нарушению циркуляции. При повреждении хотя бы одной трубы пароперегревателя или экранной трубы парогенератор необходимо останавливать, расхолаживать и производить замену труб, что требует значительного времени и расходов. Отложения, образующиеся в проточной части турбин, оказывают так же существенное влияние на экономичность их работы. При накапливании отложений происходит снижение относительного внутреннего к.п.д. турбины η oi, возникает шероховатость поверхности лопаточного аппарата, уменьшаются проходные сечения для пара – в результате падает мощность турбины, а, следовательно, сокращается подача энергии потребителям. Занос солями проточной части ЦВД турбины 300 МВт на 10% уменьшает η oi на 0, 5 – 1% и тем самым приводит к пережогу ~ 2, 0-2, 5 тыс. т.у. т/год. При наличии значительных и неравномерных отложений на лопатках турбин, учитывая скорость вращения ротора 3000 об/мин, возможно разрушение лопаточного аппарата. Для оборудования АЭС, работающих как правило на влажном паре, серьезной проблемой кроме коррозии является так же высокий эрозионный износ конструкционных материалов. Последствие коррозионно-эрозионного износа проявляется в виде утонения, и в конечном счете, разрушения элементов энергетического оборудования с последующей разгерметизацией рабочего тракта электростанции. Общая эрозия-коррозия становится главной причиной загрязнения рабочей среды железосодержащими соединениями и образование отложений в парогенераторах и турбинах. Отложения на теплопередающих поверхностях реакторов, в частности на оболочке твэлов приводит к уменьшению коэффициентов теплопередачи и следовательно к повышению температуры оболочек, что может вызвать выход твэлов из строя. Образование таких отложений находится в прямой зависимости от выноса продуктов коррозии, т.е от поступления в реактор загрязненной питательной воды. Основным фактором определяющим техническое состояние и фактический срок службы парогенераторов АЭС, является состояние его теплообменных труб - незаменяемых и невосстанавливаемых частей парогенератора. При достижении определенного количества заглушенных теплообменных труб требуется замена парогенератора, а это связано со значительными экономическими потерями и дозовыми нагрузками персонала АЭС. Наличие отложений на внутренних поверхностях конденсаторных труб, омываемых охлаждающей водой, ухудшает теплоотдачу в конденсаторе и уменьшает проходные сечения труб. Это приводит к повышению температуры пара внутри конденсатора и росту гидравлического сопротивления системы, которое уменьшает расход охлаждающей воды и повышает ее нагрев. Оба эти процесса, взаимно усиливая друг друга, ухудшают вакуум и увеличивают удельный расход пара на выработанный кВт/ч, что приводит к снижению экономичности турбоагрегата. Наличие в теплоносителе коррозионноактивных газов приводит к развитию в теплоэнергетическом оборудовании коррозионных процессов, которые могут привести к разрушению металла и вызвать необходимость аварийного останова. Мировой опыт эксплуатации ТЭС и АЭС доказывает, что в результате недостаточного внимания ко всему комплексу проблем, связанных с водоподготовкой и ВХР, низкой оперативностью химического контроля энергосистемы несут убытки, главным образом, вследствие коррозии и отложений, приводящих к снижению к.п.д., мощности и надежности работы оборудования.
|