Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА № 1.9





 

ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ

 

Цель работы:

 

1.Изучить условия возникновения продольной стоящей волны в упругой среде.

2.Измерить скорость распространения продольных упругих волн в стержнях из различных материалов.

3.Измерить модуль Юнга различных материалов.

 

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ РАБОТЫ

 

Процесс распространения колебаний в пространстве называется волной. Волны, возникающие в упругой среде (твердой, жидкой или газообразной), называются упругими волнами. При распространении упругой волны частицы среды не вовлекаются в поступательное движение, а только совершают колебания около своих положений равновесия. Уравнением волны называют функцию, определяющую смещение частицы среды из положения равновесия с координатами, в момент времени t. В случае, если направление колебаний частиц среды совпадает с направлением распространения волны, волны называются продольными, если направление колебаний частиц перпендикулярно направлению распространения волны – поперечные.

Геометрическое место точек, до которых доходит волна к моменту времени t, называется волновым фронтом. В случае, если волновой фронт имеет форму плоскости волна называется плоской, сферы – сферической.

Получим уравнение плоской волны, распространяющей вдоль оси х. Предположим, что ее источник находится в начале координат и совершает гармонические колебания с частотой по закону , где и , соответственно амплитуда и начальная фаза колебаний.

При распространении колебаний от источника вдоль оси х отклонение частицы среды от положения равновесия с координатой х определяется уравнением

(1)

где - время, в течение которого колебания от источника дойдут до точки среды с координатой х.

Если - скорость распространения колебаний (волны), то , где знак “+” отвечает волне, распространяющейся в положительном направлении оси х, а знак “-” – в отрицательном. Тогда, принимая во внимание, что

где Т – период колебаний, - длина волны, - волновое число, перепишем (1) в виде

(2)

Функция (2) и представляет собой искомое уравнение плоской волны, распространяющейся вдоль оси х, причем знак “-” соответствует волне, распространяющейся в положительном направлении оси х, знак “+” в отрицательном.

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы среды при распространении каждой из волн в отдельности. Это справедливо для волн любой природы и получило название принципа суперпозиции. В случае, когда колебания, обусловленные отдельными волнами, в каждой точке среды обладают постоянной разностью фаз, такие волны называют когерентными. В случае наложения двух и более когерентных волн с одинаковыми направлениями колебаний частиц, наблюдается явление перераспределения колебаний в пространстве с образованием устойчивой картины чередования минимумов и максимумов амплитуд колебаний. Такое явление называется интерференцией.

При наложении двух когерентных плоских волн с одинаковыми амплитудами, направленными навстречу друг к другу, в результате их интерференции возникает колебательный процесс, называемый стоячей волной

Найдем уравнение плоской стоячей волны в однородном стержне длинной l, закрепленном в середине, а также спектр его собственных частот.

 

 
 

 


Пусть на торце стержня с координатой х =0 созданы гармонические колебания (источник колебаний). Тогда вдоль стержня, лежащего на оси х (рис.1.9.1) будет распространятся упругая плоская волна

(3)

которая затем отражается от свободного торца стержня с абсциссой х=l, так что в каждой точке волнового поля между торцами будет складываться колебания в падающей и отраженной волнах. Уравнение отраженной волны, распространяющейся от торца противоположно направлению оси , имеет вид

(4)

где , - константа, значение которой должно обеспечивать условие закрепленности стержня в его середине.

Складывая уравнения (3) и (4) с учетом того, что , находим уравнение волнового процесса в стержне

(5)

Функция (5), также как (3) и (4), имеет смысл смещения частицы среды от ее равновесного положения с абсциссой х в момент времени t. Однако в отличие от волновых процессов, описываемых функциями (3) и (4), в которых каждая точка среды колеблется с одинаковой амплитудой , функция (5) описывает процесс в котором каждая частица среды колеблется с амплитудой, зависящей от координаты х:

(6)

Такой колебательный процесс частиц среды называют стоячей волной. Функцию (5) называют уравнением плоской стоячей волны.

Используя выражение (6), мы можем теперь выразить условие закрепленности стержня в его середине равенством

(7)

означающим неподвижность частиц поперечного сечения стержня с абсциссой . Тогда из (6) с учетом (7) вытекает, что

и, следовательно, для выполнения условия закрепленности стержня в его середине достаточно положить

(8)

Подберем теперь частоту колебаний источника так, чтобы отраженная волна вызывала в точке с абсциссой х =0, где расположен источник, колебания в фазе с ними, т.е.

(9)

где n=0, 1, 2, …. Учитывая (8) и то, что , из (9) получаем

(10)

Ясно, что при заданной длине стержня l, уравнение (10) выполняется лишь для определенного набора частот , называемых собственными частотами стержня, закрепленного посередине. Учитывая, что из (10) получаем формулу для набора (спектра) собственных частот

n=0, 1, 2, 3… (11)

Из (11) вытекает, что собственные частоты кратны частоте

(12)

называемой основной частотой. В акустике частоту называют также частотой основного тона, тогда как , при , - частотами обертонов.

Легко видеть, что при выполнении равенств (8) и (10), приводящих к частоте (11), уравнения (5) и (16) перепишутся в простом виде

(13)

(14)

Точки, в которых амплитуда стоячей волны А(х) обращается в нуль, называется узлами стоячей волны. Точки, колеблющиеся с максимальной амплитудой , называются пучностями стоячей волны. Тогда из (14) с учетом (11) вытекает, что в середине стержня реализуется узел , а на обоих торцах стержня – пучности

Таким образом, при совпадении частоты источника с любой из собственных частот стержня (11), амплитуда колебаний точек его торцов увеличивается в два раза по сравнению с амплитудой колебаний источника. Это явление по аналогии со случаем вынужденных колебаний называют резонансом.

 







Дата добавления: 2014-11-10; просмотров: 557. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия