Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. Метод Монте-Карло является методом статистического моделирования





Метод Монте-Карло является методом статистического моделирования. Его применение эффективно там, где сложно или невозможно построение аналитической модели. Например, в системах массового обслуживания, не являющихся марковскими системами, в задачах надежности, управления, экономики и т.п., вообще, для сложных систем, которые состоят из большого числа взаимодействующих элементов.

Идея метода заключается в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат реализации процесса. Множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики и получены интересующие нас статистические характеристики. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования.

В математике метод Монте-Карло применяется для вычисления интегралов, особенно многомерных, для решения систем алгебраических уравнений высокого порядка и т.п.

Метод Монте-Карло имеет простую структуру вычислительного алгоритма. Как правило, составляется программа для осуществления одного случайного испытания. Затем это испытание повторяется N раз, причем каждый опыт не зависит от всех остальных, и результаты всех опытов осредняются. Поэтому метод Монте-Карло называют также методом статистического моделирования.

Погрешность вычисления метода, как правило, пропорциональна , где D – некоторая постоянная, N – число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз, нужно увеличить N в 100 раз.

Приведем важное для метода Монте-Карло соотношение:

, (1.1)

где - случайная величина; m – неизвестная искомая величина (статистическую оценку которой необходимо получить); b – среднеквадратичное отклонение случайной величины (одинаково для всех ).

Соотношение (1.1) дает нам метод расчета m и оценку погрешности. В самом деле, найдем N значений случайной величины . Из (1.1) видно, что среднее арифметическое этих значений будет приближенно равно m. С большой вероятностью погрешность такого приближения не превосходит величины . Очевидно, эта погрешность стремится к нулю с ростом N.

В рассматриваемой работе требуется определить среднее время работы РТК. При этом известны интенсивность потока отказов и схема поточной линии.

Известно, что поток отказов подчиняется экспоненциальному (показательному) закону распределения с плотностью распределения

,

где - интенсивность потока отказов (число отказов в сутки); t –последовательности значений продолжительности интервалов между отказами.

Требуется смоделировать случайную величину, распределенную в соответствии с экспоненциальным законом.

Существует основное соотношение, связывающее случайные числа с заданным законом распределения и случайные числа с равномерным законом распределения в интервале [0, 1]. Суть его состоит в том, что для преобразования последовательности случайных чисел с равномерным законом распределения в интервале [0, 1] в последовательность случайных чисел с заданной функцией распределения необходимо из совокупности случайных чисел с равномерным законом распределения выбрать случайное число и решить уравнение

относительно x.

Для случая экспоненциального распределения выразим через

. (1.2)

Значения определяем по генератору случайных чисел в MS EXCEL (или другой программе) или по таблице случайных чисел.

Рассмотрим применение метода Монте-Карло для статистической оценки некоторого определенного интеграла

,

где - область в n -мерном пространстве.

В лабораторной работе для простоты вычислений рассматривается определенный интеграл от функции одной переменной

(3)

Требуется найти его статистическую оценку . Задача сводится к оценке отношения площади криволинейной трапеции, соответствующей некоторому определенному интегралу, к площади квадрата, в который этот интеграл может быть вписан, т.е. имеющий координаты: (а, 0), (b, 0), (а, b-а), (b, b-а).

Идея метода заключается в следующем. Выберем пару случайных чисел х: и у: – их можно рассматривать как координаты случайной точки в указанном квадрате. Затем выберем следующую пару чисел и т.д. Когда число выбранных таким образом точек станет достаточно большим, они более-менее равномерно покроют данный квадрат. При этом множество точек N, попавших под кривую , будет пропорционально площади криволинейной трапеции, а множество всех точек M – площади квадрата.

Тогда статистическая оценка искомого интеграла найдется по формуле

, (1.4)

где S – площадь квадрата со стороной b-а.

Погрешность (абсолютная) может быть найдена из разности:

(1.5)

 







Дата добавления: 2014-11-10; просмотров: 725. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия