Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные теоретические сведения. 1. Преобразование частоты сигнала





1. Преобразование частоты сигнала. В этом случае сигнал на входе устройства с переменной амплитудой и (или) фазой , сосредоточен­ный по спектру около частоты f1 превращается на выходе устройства в сигнал , имеющий ту же форму (К и - постоянные), но сосредоточенный по спектру около частоты .

При преобразовании частоты вверх f2 больше, чем f1. При преобразовании частоты вниз f2 меньше, чем f1.

Преобразование частоты часто используется в современных устройствах при приёме сигналов как с амплитудной, так и угловой модуляцией;

2. Преобразователь частоты. Преобразователем частоты называют устройство, позволяющее переносить спектр входного сигнала вверх или вниз по шкале частот.

В качестве преобразователя частоты может быть использован нелинейный усилитель с колебательным контуром на выходе, настроенным на специальную (комбинационную) частоту, рис. 3.1.

Рисунок 3.1. Схема преобразователя при преобразовании частоты вверх

Преобразование частоты вверх осуществляется путем перемножения двух колебаний и и выделения колебания с комбинационной частотой (w+Ω) на выходе, следуя формуле:

cos(x)× cos(y) = (1/2)[cos(x+y)+cos(x-y)]

При этом имеем:

Воздействие:

ВАХ:

Полезная реакция:

В общем случае низкочастотный сигнал можно представить в виде суммы нескольких гармонических колебаний. Для выделения полезной реакции необходим фильтр.

Преобразование частоты вниз осуществляется по той же схеме нелинейного усилителя (рис. 3.2) путем перемножения двух входных колебаний и и выделения колебания с комбинационной частотой на выходе, следуя формуле:

 

cos(x)× cos(y) = (1/2) [cos(x+y)+cos(x-y)]

 

Рисунок 3.2 - Схема преобразователя при преобразовании частоты вниз

При этом имеем:

Воздействие:

ВАХ:

Полезная реакция:

В общем случае низкочастотный сигнал можно представить в виде суммы нескольких гармонических колебаний. Для выделения полезной реакции необходим фильтр низкой частоты.

3.Амплитудная модуляция ( АМ) исторически была первым видом модуляции, освоенным на практике. В настоящее время АМ применяется в основном только для радиовещания на сравнительно низких частотах (не выше коротких волн) и для передачи изображения в телевизионном вещании. Это обусловлено низким КПД использования энергии модулированных сигналов.

АМ соответствует переносу информации s(t) в амплитуду U(t) при постоянных значениях параметров несущего колебания: частоты wи начальной фазы j0. АМ – сигнал представляет собой произведение информационной огибающей U(t) и гармонического колебания ее заполнения с более высокими частотами. Форма записи амплитудно-модулированного сигнала:

u(t) = U(t)× cos(w ot+j o), (3.1)

U(t) = Um× [1+m× s(t)], (3.2)

где Um – постоянная амплитуда несущего колебания при отсутствии входного (модулирующего) сигнала s(t), m – коэффициент амплитудной модуляции

Значение m характеризует глубину амплитудной модуляции. В простейшем случае, если модулирующий сигнал представлен одночастотным гармоническим колебанием с амплитудой So, то коэффициент модуляции равен отношению амплитуд модулирующего и несущего колебания m=So/Um. Значение m должно находиться в пределах от 0 до 1 для всех гармоник модулирующего сигнала. При значении m< 1 форма огибающей несущего колебания полностью повторяет форму модулирующего сигнала s(t), что можно видеть на рис.3.4 (сигнал s(t) = sin(wst)). Малую глубину модуляции для основных гармоник модулирующего сигнала (m< < 1) применять нецелесообразно, т.к. при этом мощность передаваемого информационного сигнала будет много меньше мощности несущего колебания, и мощность передатчика используется неэкономично.

 

Рис..3.4 – Модулированный сигнал Рис. 3.5 – Глубокая модуляция

 

На рис.3.5 приведен пример так называемой глубокой модуляции, при которой значение m стремится к 1 в экстремальных точках функции s(t).

Стопроцентная модуляция (m=1) может приводить к искажениям сигналов при перегрузках передатчика, если последний имеет ограниченный динамический диапазон по амплитуде несущих частот или ограниченную мощность передатчика (увеличение амплитуды несущих колебаний в пиковых интервалах сигнала U(t) в два раза требует увеличения мощности передатчика в четыре раза).

При m> 1 возникает так называемая перемодуляция, пример которой приведен на рис.3.6. Форма огибающей при перемодуляции искажается относительно формы модулирующего сигнала и после демодуляции, если применяются ее простейшие методы, информация может искажаться.

 

Рис. 3.6 -Перемодуляция сигнала Рис.3.7-Физические спектры сигналов

4.Моногармоническая амплитудная модуляция. Простейшая форма модулированного сигнала создается при моногармоническойамплитудной модуляции – модуляции несущего сигнала гармоническим колебанием с одной частотой Ω:

u(t) = Um[1+m× cos(Ω t)]× cos(wot), (3.3)

 

Значения начальных фазовых углов несущего и модулирующего колебания здесь и в дальнейшем, для упрощения получаемых выражений будем принимать равными нулю. С учетом формулы cos(x)× cos(y) = (1/2)[cos(x+y)+cos(x-y)] из выражения (3.3) получаем:

u(t) = Umcos(wot) + (UmM/2)cos[(wo+Ω)t] + (UmM/2)cos[(wo- Ω)t] (3.4)

 

Отсюда следует, что модулирующее колебание с частотой Ω перемещается в область частоты wo и расщепляется на два колебания с частотами соответственно wo+ Ω верхняя боковая частота, и wo- j - нижняя боковая частота. Эти частоты располагаются на оси симметрично относительно частоты wo, рис. 3.7. Амплитуды колебаний на боковых частотах равны друг другу, и при 100%-ной модуляции равны половине амплитуды колебаний несущей частоты. Если преобразовать уравнение (3.3) с учетом начальных фаз несущей и модулирующей частоты, то получим правило изменения фаз, аналогичное правилу изменения частоты:

-начальная фаза модулирующего колебания для верхней боковой частоты складывается с начальной фазой несущей,

- начальная фаза модулирующего колебания для нижней – вычитается из фазы несущей.

Физическая ширина спектра модулированного сигнала в два раза больше ширины спектра модулирующего сигнала.

 







Дата добавления: 2014-11-10; просмотров: 2771. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия