Основные теоретические сведения. Амплитудный детектор (АД) - устройство, на выходе которого создается напряжение в соответствии с законом модуляции амплитуды входного гармонического сигнала
Амплитудный детектор (АД) - устройство, на выходе которого создается напряжение в соответствии с законом модуляции амплитуды входного гармонического сигнала. Если на входе АД действует напряжение uвх = Uн(1 + mcosΩ t)cosω 0t, модулированное по амплитуде колебанием с частотой F = Ω /2π (где Uн - амплитуда несущей, m - индекс модуляции), то график изменения этого напряжения во времени и его спектр имеют вид, показанный на рис.5.1а. Напряжение на выходе детектора Eд и его спектр приведены на рис. 5.1б. В зависимости от способа выполнения АД можно подразделить на синхронные детекторы, использующие линейную цепь с периодически меняющимися параметрами, и асинхронные, использующие нелинейные цепи. Коэффициент передачи АД можно найти по формуле: Кд = UF /mUн. Основные характеристики амплитудных детекторов изображены на рис. 5.1.
а) Вход АД б) Выход АД Рисунок 5.1 – Временные диаграммы и амплитудные спектры напряжений на входе и выходе АД Основной характеристикой АД является детекторная характеристика, показывающая зависимость выпрямленного напряжения детектора Ед от амплитуды Uн(1 + mcosΩ t) модулированного напряжения, подводимого ко входу. Данная характеристика показана на рис. 5.2. Рисунок 5.2 – Детекторная характеристика и диаграммы изменения во времени амплитуд напряжений на входе и выходе детектора
Очевидно, для детектирования без искажений детекторная характеристика должна быть линейной. В этом случае по ее наклону можно определить коэффициент передачи Кд. Принцип работы диодного АД. Схема последовательного АД (нагрузка и диод включены последовательно) приведена на рис.5.3. Принцип работы диодного АД можно пояснить с временной или спектральной точек зрения
Рисунок 5.3 -Схема диодного АД
Временная трактовка принципа работы АД. Пусть на вход АД поступает гармоническое напряжение с медленно меняющейся амплитудой uвх = Uн cosω оt (рис.5.4).
Рисунок 5.4 - Временная трактовка принципа работы АД.
Если напряжение uвх положительно, то диод открывается и конденсатор нагрузки Cн начинает заряжаться. Постоянная времени заряда τ з мала, так как определяется емкостью Cн и малым сопротивлением открытого диода. Согласно рис.5.5 напряжение на диоде uд = uвх - Eд. В момент времени t1 = θ диод закрывается, при этом uвх < Eд и конденсатор начинает разряжаться через резистор Rн. Постоянная времени разрядка конденсатора τ р = RнCн > > τ з, поэтому разряд Cн происходит значительно медленнее, чем его заряд. Разряд конденсатора Cн продолжается до момента времени t2=2π -θ, при котором uд = 0 далее диод снова открывается и конденсатор Cн начинает заряжаться. В результате на выходе АД создается продетектированное напряжение Eд, имеющее пульсирующую составляющую с частотой несущего сигнала. Уровень пульсаций мал при условии, что τ р больше чем 1/fс. Спектральная трактовка принципа работы АД. На рис.5.5 показан характер изменения тока диода при постоянной амплитуде детектируемого сигнала в установившемся режиме. Рисунок 5.5 - Спектральная трактовка принципа работы АД
Пренебрегая пульсациями, считаем, что напряжение на выходе детектора Eд постоянно во времени (Uн =const) и обуславливает отрицательное напряжение смещения на диоде, на которое накладывается напряжение uн. ВАХ диода iд = f (uд) для простоты рассмотрения аппроксимирована линейно-ломанной зависимостью с нулевым обратным током. Ток через диод iд протекает при открытом диоде и представляет собой синусоидальные импульсы с углом отсечки θ < 90º. В этом токе (как в любой периодической функции) содержится постоянная составляющая Iдо и высокочастотные составляющие с частотами: fс, 2fс… Очевидно, что постоянная составляющая тока Iдо протекает через сопротивление нагрузки Rн (по маршруту D-Rн-L-D), создавая на ней выпрямленное напряжение Eд = IдоRн, а высокочастотные составляющие замыкаются через Cн (по цепи D- Сн- L- D). Если входное напряжение -АМ колебание, то напряжение Eд изменяется в соответствии с законом изменения огибающей входного напряжения. Частота среза ФНЧ fср определяется снижением АЧХ по уровню на 3 дБ относительно максимального значения и выбирается исходя из условия: , а также Ω < < fср < < fн, где Ω - частота информационного сигнала, fн - частота несущего колебания Характеристика детектирования Eд = Uн cos θ при такой трактовке прямолинейна и детектирование осуществляется без искажений.
|