Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскость. Уравнение плоскости с нормальным вектором = {А,В,С} и проходящей через точку M0(x0,y0,zo) имеет вид





Уравнение плоскости с нормальным вектором = {А, В, С} и проходящей через точку M0(x0, y0, zo) имеет вид

А(х -х0) + В(у - у0) + C(z - z0) = 0. (13)

Из этого уравнения получается общее уравнение плоскости

Ax + By + Cz+D=0, (14)

представляющее собой уравнение первой степени относительно переменных x, y и z.

Геометрически удобное уравнение в отрезках

, (15)

где а, b, с - величины отрезков, отсекаемых плоскостью на осях координат соответственно.

Нормированное уравнение плоскости

xcosα + ycosβ + zcosg-ρ = 0, (16)

где ρ - расстояние плоскости от начала координат; a, β, g - углы образованные единичным вектором нормали к плоскости (он направлен от начала координат к плоскости) с соответствующими осями координат. Если дана плоскость общим уравнением (14), то

μ Ах + μ Dy + μ Сz + μ D = О

будет нормированным уравнением той же плоскости, если

,

где знак выбирается противоположным знаку D - свободного члена в общем уравнении.

Нормированное уравнение (16) позволяет получить отклонение δ и

расстояние d от заданной точки Мо 0, у0, z0) до плоскости

δ = x0cosα + y0cosβ + z0cosγ -ρ, (17)

d = \ δ \. (18)

Условия перпендикулярности, параллельности и угол между плоскостями совпадают с аналогичными условиями для векторов, нормальных к этим плоскостям.







Дата добавления: 2014-11-10; просмотров: 546. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия