Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая в пространстве. Прямая в пространстве может быть задана как линия пересечения двух плоскостей





Прямая в пространстве может быть задана как линия пересечения двух плоскостей

(19)

причем должно нарушаться хотя бы одно из равенств

,

чтобы эти плоскости пересекались.

Другой способ задания прямой:

(20)

каноническими уравнениями, где М0(x0, у0, z0) - точка, через которую проходит прямая в направлении вектора = {1, т, п}. Тогда условия параллельности, перпендикулярности и угол между прямыми могут быть получены как соответствующие условия для направляющих векторов этих прямых.

Из (20) могут быть получены уравнения прямой, проходящей через две точки М1{x1, y1, z1) и M2(x2, y2, z2)

(21)

и параметрические уравнения прямой:

. (22)

Если прямая задана уравнениями (19), то можно получить канонические уравнения этой прямой, если взять какую-нибудь точку, задавая, например, х0 и отыскивая соответствующие у0 и z0 из системы (19), и получить направляющий вектор прямой

Если прямая задана уравнениями (20), а плоскость общим уравнением (14), то условие параллельности прямой и плоскости

Аl + Вт+Сп = 0, (23)

а условие перпендикулярности

.

Пример 4. Привести уравнение прямой

к каноническому виду.

Решение. Найдем какую-нибудь точку на этой прямой. Пусть х = 0, тогда система примет вид

.

Отсюда y=-2, . Получим точку Мо (0; - 2; )Найдем направляющий вектор

Канонические уравнения прямой

 

Пример 5. Составить уравнения движения точки M(x, y, z), которая имеет начальное положение Мо(1; -2; 4), движется прямолинейно и равномерно в направлении вектора = {2; 3; 6} со скоростью , .

Решение. Тогда . Искомые уравнения будут

 

 

Пример 6. Найти расстояние точки М0(1; 2; 0) от прямой

Решение. Проведем через точку Мо плоскость α, перпендикулярную данной прямой и найдем М1 - точку пересечения плоскости α с данной прямой. Тогда искомое расстояние будет расстоянием от Мо до М1. Для плоскости α воспользуемся уравнением вида (13), так как известна точка М0(1; 2; 0) на ней лежащая и нормальным вектором может служитьнаправляющий вектор прямой а= {2, 5, 1}. Получим

2(х -1) + 5(у - 2) + 1(z- 0) = 0,

или

2x + 5y + z-12 = 0.

Найдем точку пересечения плоскости α и данной прямой, решив систему из уравнений плоскости α и параметрических уравнений данной прямой:

Исключая x, y, z, найдем t=-0, 5. Тогда х=1, y=1, 5, z=2, 5. Точка М1(1; 1, 5; 2, 5). Расстояние М0М1:

(лин.ед.).

 

Пример 7. Найти угол между прямой

и плоскостью

х + 2у - 3z - 1 = 0.

Решение. Рассмотрим нормальный вектор плоскости = {1; 2; -3} и направляющий вектор прямой = {2; 3; 5}. Косинус угла между этими векторами равен синусу угла между прямой и плоскостью:

,

.







Дата добавления: 2014-11-10; просмотров: 661. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия