Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая на плоскости. .





Прямая на плоскости

Всякая прямая линия определяется в заданной прямоугольной декартовой системе координат Оху уравнением первой степени относительно переменных х и у.

Ах + Ву + С= 0 (1)

общее уравнение прямой, где А и В - координаты одного из нормальных векторов этой прямой.

(2)

каноническое уравнение прямой, где (х0, у0) - координаты точки, через которую проходит прямая, l и т- координаты направляющего вектора .

xCosa+yCosβ -p = 0 (3)

нормированное уравнение прямой, где Cosa, Cosβ - координаты единичного вектора нормали прямой (он направлен из начала координат к прямой), р - расстояние прямой от начала координат .

Из уравнений (1)-(3) могут быть получены удобные в геометрическом смысле уравнения:

у = кх + b (4)

уравнение с угловым коэффициентом к = tga, α - угол наклона прямой к оси Ох, b - величина отрезка, отсекаемого на оси Оу.

(5)

уравнение прямой, проходящей через две данные точки (х1, у1) и 2 , у2).

(6)

параметрические уравнения прямой, проходящей через точку о , уо) в направлении вектора = {1, т).

(7)

уравнение прямой «в отрезках», где а и b величины отрезков отсекаемых прямой на осях ох и оу соответственно.

Взаимное расположение двух прямых, заданных уравнениями (1), (2), (3), вполне определяется взаимным расположением векторов с ними связанных, поэтому условия параллельности, ортогональности и угол между прямыми получены из соответствующих условий для векторов. Для прямых, заданных уравнениями вида (4), выпишем эти условия. Если y=k1х + b1 и у = к2х + Ь2 уравнения этих прямых, то

k1 =k2 –условие параллельности, (8)

k1× k 2=-1 –условие перпендикулярности, (9)

-тангенс угла между прямыми (10)

Если дана прямая общим уравнением Aх + Ву + С=О, то его можно нормировать умножением на нормирующий множитель

, (11)

где знак выбирается противоположным знаку свободного члена С из общего уравнения

μ Ах + μ Bу + μ C = 0

Нормированное уравнение позволяет получить отклонение δ и расстояние d для данной точки М00, у0) от прямой по формуле δ = х0 cosα + у0 cosβ - ρ,

. (12)

Пример 1. Найти угол между прямыми

.

 

Решение.

,

тогда другой угол между прямыми 135°.

 

Пример 2. Найти проекцию точки Мо(4, 9) на прямую, проходящую через точки М1(3, 1) и М2(5, 2).

Решение. Найдем уравнение прямой М1М2 по формуле (5)

,

откуда . Ищем уравнение перпендикуляра к этой прямой, проходящего через точку Мо в виде (4). Пользуясь условием перпендикулярности кгк1 =-1, найдем . Так как координаты Мо должны удовлетворять искомому уравнению, то в уравнение у=-2x+b подставим координаты Мо: 9 =-2× 4+b.

Получим b= 17. Точка пересечения заданной прямой и этого перпендикуляра даст проекцию Мо на данную прямую.

Решим систему:

.

Получим х = 7, у = 3.

Пример 3. Найти расстояние между параллельными прямыми

у=2х-З и у=2х + 5.

Решение. На первой прямой найдем какую-нибудь точку. Пусть х = 1, тогда у= -1. Получим точку Мо (1, -1).

Приведем уравнение второй прямой к нормированному виду:

2x-y+5=0, ,

- нормированное уравнение. Тогда по формуле (12) получим

(лин.ед.)







Дата добавления: 2014-11-10; просмотров: 574. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия